
From Archi Torture to Architecture:

Undergraduate Students Design and Implement Computers

Using the Multimedia Logic Emulator

Timothy D. Stanley, Lap Kei Wong, Daniel Prigmore, Justin Benson,

Nathan Fishler, Leslie Fife, Don Colton

School of Computing

Brigham Young University Hawaii

Laie, HI 96762 USA

StanleyT@byuh.edu

Abstract

Students learn better when they both hear and do. In computer architecture courses “doing” can be difficult in

small schools without hardware labs hosted by computer engineering, electrical engineering, or similar

departments. Software solutions exist. Our success with George Mills’ Multimedia Logic (MML) is the focus of this

paper. MML provides a graphical computer architecture solution with convenient I/O support and the ability to

build and emulate a variety of computer designs. It has proven highly motivational to upper division computer

science students designing and constructing emulated computers. Student projects resulted in excellent student

understanding of the detailed inner workings of computers. Students also developed better teamwork skills and

produced useful training aids for the lower division computer organization class. Designs implemented include 8-

bit and 16-bit, von Neumann and Harvard architectures, from single-cycle to twelve-cycle instructions. Issues

resolved during the learning process include timing, initialization, instruction set architecture, I/O, and assembler

design. We discuss pedagogical issues involved in using MML to implement instructor and student computer

designs. MML is compared to using a hardware-based Intel 8085 Microprocessor basic systems course.

1. Introduction

Effective learning comes from doing, not just hearing. Computer Architecture is an area where doing is a natural

extension to the course material. There are many approaches to teaching a lab component for Computer

Architecture. These include no lab at all, emulated hardware, actual hardware, and a mix of emulated and actual.

Software tools range from register- and memory-level computer simulators to high-level chip design languages.

Between these extremes is George Mills’ Multimedia Logic (MML). We discuss the use of computer simulators and

chip definition languages. We then introduce Multimedia Logic and our approach.

1.1 Computer/Logic Simulators

Many computer architecture classes use emulators. The popular textbook “Computer Organization and Design”

[Pat94] features SPIM by James Larus [Lar]. It shows memory contents and registers and includes an assembler but

does not simulate the datapath.

Moving closer to our goal, many computer architecture classes use the text by Null and Lobur [Nul03a] that

introduces MARIE. They may also use MarieSim [Nul03b]. MARIE uses a von Neumann architecture with a simple

instruction set. Using MarieSim, students can write their own programs and watch them execute, seeing the effect

these programs have on system state. MARIE has been implemented with a “Data Path Simulator” that highlights

registers and data paths visually. This shows the steps the processor goes through when running a program.

However, students cannot build their own computers and simulate them.

At the other end of the complexity spectrum is the implementation of a simulator of an entire real architecture.

Clark, et al, [Cla01] implemented a simulator for the Sparc V9. Even if it had a GUI, this is of limited usefulness for

an undergraduate course in computer architecture. The level of complexity this embodies is not a good starting point

for learning computer architecture. In addition, pedagogically, learning only one machine’s architecture is limiting.

The Alfa-1 simulator [Wai01] also works specifically with the Sparc processor. This tool allows the user to

experiment with the entire architecture, including extending it in some ways. However, the limited user interface and

the restriction to a single architecture are limitations. The Alfa-1 was designed to replace tools that simulated

obsolete architectures. This approach only ensures that an eventual replacement for Alfa-1 will be needed.

Some simulation tools address only a single problem. The KScalar simulator [Mou02] provides a tool for learning

about microprocessors. This is, of course, only part of what must be covered in a typical computer architecture

course. However, this might be a good choice for an advanced course on microprocessors or for a few labs within a

larger course. A similar approach is used by Holland, et al [Hol03]. They provide an incomplete processor and have

students design the missing pieces. They can simulate any non-floating point instruction in their 8-instruction MIPS

processor. This creates an opportunity for students to learn processor details. However, the student is still limited to

only a single processor type and the absence of floating point. Other parts of the machine architecture still must be

learned in some fashion. Another single purpose tool is SIMT [Tao03]. This simulator allows the evaluation of

shared memory systems. While these tools may be very useful in specialized computer architecture courses, having

to learn several unconnected single purpose tools has limited usefulness in a general computer architecture course.

1.2 Chip Design Languages

Several chip design languages are available.

Logisim [Bur02] is another design and simulation tool. A basic package, Logisim allows the user to design circuits

from basic logic components and some basic devices. The primary drawbacks are the lack of a clock for timing and

the somewhat primitive I/O capabilities.

Logic Works 5 [Cap] from Capilano Computing is a wonderful package, but the emphasis is on detailed timing and

simulation of circuits to be exported to silicon. It seems more suited to advanced students that already grasp

computer architecture and are looking for the next step. It does not have the input and output devices available in

Multimedia logic.

DLSim [Les] by Matthew Leslie was developed while an undergraduate student with additional development funded

by Cambridge. It is an open source Java program available from http://www.sourceforge.net/. DLSim has the

capability to develop macros and can display logic states propagated through the circuits. But the devices are blocks

and the rich set of IO devices available in Multimedia logic is not available.

1.3 Multimedia Logic (MML)

The package we chose is Multimedia Logic (MML), open source free software by George Mills [Mil]. MML strikes

a good depth of detail. We can design and implement logic at the gate level, but still use high-level I/O operations.

(This is parallel to the C programming language. C provides near-assembler access to the machine, but still includes

a standard I/O library in the basic distribution.) We have seen how a variety of tools exist to simulate imaginary and

real computers based on simple and complex instruction sets. Generally these tools allow the simulation of only a

single architecture and they often hide many of the underlying details that we might like to reveal. You can write

programs and see the results in various registers, but the computer itself remains a black box. Alternately, some

tools allow the student to access the logic gate level of design but have limited I/O capabilities.

We start our discussion of MML with a “Hello World” example shown in Figure 1. This seems to be the first

program shown in every programming language text, and it is fun to do it in an architecture course as well.

MML allows the student to define an Instruction Set and build the enabling architecture. This means the student is

not limited to von Neumann computers or the instruction sets designed by others. With an excellent graphical user

interface and ASCII I/O, the tool is easy to learn and use. Because MML is open source software, functions can be

added and the tool recompiled. Despite being easy to use it is capable of sophisticated designs. For example, see the

work of James Larson [Lars].

Multimedia Logic is a very decent environment for virtual computer construction. We were able to implement all of

the necessary components in order to run programs written for MARIE. The benefits of MML for our project were

extensive. Ease of use compared to physical hardware is obvious. In addition, MML uses abstraction to simplify the

hardware components it offers and reduces the need to build all of one’s own components, such as an arithmetic

logic unit.

1.4 Architecture Course Design

Students are shown how to build a computer. Starting from an Instruction Set Architecture and continuing through

the building of emulated hardware to implement the instruction set, our students are required to design and build

their own emulated computer. Students feel empowered and are highly motivated to participate in the labs and

survive the debugging process. They report having a great sense of accomplishment and achieving a profound

understanding of how computers work at the logic level.

In the most recent semester to set the stage for this assignment, the instructor provided as an example a 4-instruction,

8-bit, accumulator-based, von Neumann design, that uses three clock cycles to execute each instruction. The

instructions are: Load the accumulator from memory, Save the accumulator to memory, Add from a memory location

to the accumulator, and Jump if the last add produced a zero result. These four instructions were supplemented by

two memory mapped commands, Output on Save to memory location x3F, and Halt on Save to memory location

x3E. Figure 1 shows the main page of this computer running a “Hello World” program. A second page of

multiplexers is not shown.

Figure 1

An alternate example also demonstrated was the single cycle, 8-bit, Harvard architecture describe in the proceedings

of the ACM Workshop on Computer Architecture Education in 2005 [Sta05]. After working through these example

designs, students were challenged to invent an original design, including an instruction set, and the registers to

support the instructions. Then they were asked to implement the design in MML [Mil].

2. Student Project Reports

Three team projects are the focus of this paper. Each team was comprised of three or four upper-division

undergraduate students. The first team implemented a 16-bit von Neumann architecture with a shared instruction

and data memory system. The second team implemented a 16-bit Harvard architecture computer with separate

memory for instructions and data. The third team implemented a computer in actual hardware using an Intel 8085

hardware trainer called the Micro-Mater MM-8000 from Elenco Electronics. Each project report is an edited version

of what was written by the students.

2.1 16-bit von Neumann Design

One three-student team used as its basis the MARIE computer architecture described in Null [Nul03a]. MARIE

stands for “Machine Architecture that is Really Intuitive and Easy,” although our group found that was not quite the

case. It is a 16-bit von Neumann design with thirteen instructions and seven registers. The registers include: an

accumulator (AC), a Memory Address Register (MAR), a Memory Buffer Register (MBR), a Program Counter (PC),

and Instruction Register (IR), an input Register (InREG), and an Output Register (OutREG).

The instructions are 16 bits, of which the most significant four constitute the opcode and the least significant twelve

the address. Instructions are variable in length and range from three to thirteen steps per instruction. The

instructions include: Load, Store, Add, Subtract, Input, Output, Halt, Skip conditional, Jump, Store and jump, Clear,

Add indirect, and Jump indirect.

2.1.1 Design Features

Our design uses two 16-bit ALUs. One is for incrementing the program counter and the other is for the Add and

Subtract commands and logical tests for the Skip Conditional command. One novel simplifying device used is the

MML node device. This device can be set to propagate a low state when it receives an unknown state. This

capability was used to initialize the register arrays.

This design was implemented in twelve pages of Multimedia Logic. The pages include the memory address register,

the memory buffer register, the accumulator with ALU, the input register, the output register, the instruction register,

the memory, the program counter with incrementer and multiplexer, the bus, the master control module with clock

and instruction decoder, the conditional skip logic, and the I/O module. The accumulator module is given in Figure

2. Figure 3 shows the master control module with instruction decoder and diagnostic LEDs.

Figure 2

Figure 3

2.1.2. Design Challenges

One of the biggest challenges of this design was the instruction decoding. Some instructions like Clear take four

clock cycles while others like Save and Jump take twelve clock cycles. Designing the decoder ROM with its

interface to control the various multiplexers and logic devices was a difficult challenge.

2.1.3. Final Product

This computer is able to run programs assembled in Linda Null’s MARIE Java emulator [Nul03b]. The machine

language instructions are copied into small text files that are loaded into memory when simulation starts. We tested

with a number of programs to verify operation of the design features.

2.1.4. Motivation to Learn and Excel

The motivation to succeed and excel at the task of building a computer was largely intrinsic in nature and was rooted

in the Computer Science program at the university as well as in the professor. It was certainly not the prospect of

achieving a high grade in the course that inspired the hard work our group exuded. Many other and simpler ideas for

computers could have been implemented to achieve the desired grade. Instead, the goal for each member of our

small team was to understand how computers work, not necessarily how this particular machine worked. This

approach made a huge difference for our project because an understanding of the various components that are used

to build a computer allowed us to try different ways to accomplish a task when previous attempts failed.

Additionally, this approach helped the group develop a machine that was as simple as possible while still being

functional.

A motivating factor was the team approach which ensured that another person was almost daily monitoring the effort

you put in to the project and lazy or sluggish work would be noticed and not be tolerated. This forced each member

of the group to contribute and work hard.

Furthermore, at the outset of the project, the professor demonstrated, step by step, how to build a program counter

(PC). The program counter is a simple component, but the process of creating it gave the impression that building

the computer was not as ominous a task as it first seemed. This instilled feelings of confidence about our abilities

and boosted the morale of the group.

The fear of failure may have been another influencing factor in the success of the project because, in addition to

building the computer, the class was also required to give a presentation to the class and other faculty members.

With this presentation looming, the group worked vigorously in order to complete the project on time and with a

thorough understanding of the course material.

This project was very motivating for our team. We spent many hours to insure that a quality project was built. We

learned a lot through the design and assembly as well as in debugging. Our fellow students also learned from our

presentation of this project and we know our instructor will be using it as a training aid in his computer organization

class.

2.2 16-bit Harvard Architecture Design

Three students created an architecture they called “Super Computer” because it stretched the limits of MML. The

group’s goal was to make a 16-bit general function computer where all instructions are only a single clock cycle.

2.2.1. Design Features

To create a general function computer we began with the instruction set: Add, Sub, Multi, BranchNE, BranchLT,

Move, Jump, Load, Print, Input, Halt. This required at least 4 bits for the opcode, and thus up to 16 instructions

could be supported. Eventually we added JumpI and RegI for ease and Write, Div, and Mod because the instruction

set did not fulfill the functionality intended. We made sixteen 16-bit registers so that each register address would use

4 bits, giving 4-bits for the opcode and up to three 4-bit register addresses for an instruction. The immediate values

were only able to be 12-bits. Most of these instructions are obvious as to their function, but a couple may need to be

explained.

The BranchLT is a conditional jump when the first register is less than the second. The BranchNE is similar but the

condition is ‘not equal to’. The Load and Write instructions read and write to an address in the memory from a

register. The RegI instruction loads an immediate (only up to 12-bits) into the default register, which is register 15

(from 0 to 15, thus 16 registers). The Print and Input instructions are more specific to Multimedia Logic. The team

wanted general functionality for users so I/O was added into the instruction set.

This computer requires nine pages of multimedia logic to build. One of these, the user interface module, is shown in

figure 4.

Figure 4

2.2.2. Design Challenges

One of the biggest design challenges was to develop the fully-multiplexed 16-bit register, 16-register array so that

any register can be used for any location in the instruction. An additional challenge was the multiplier. The ALU in

MML provides only 8-bit results, so even though a multiply instruction is given, without a 16-bit result only a four-

by-four bit multiply can be guaranteed to be accurate. Since we wanted the capability to do eight bit multiplies we

built our own multiplier module.

Another problem the team fixed was with the Load and Write instructions and the memory. The way that memory

works in MML is that there are three inputs, which are data in, address line, and write data, with one output, which is

the contents of the memory at the address line. As the program counter was directing the memory to the current

instruction the Load instruction had to change the address to access the needed data, but this in turn would change

the current instruction which would case unwanted results. To fix this we used the high and low cycle in the clock

pulse so that on the high pulse for the Load command the current instructions would be saved to a temporary buffer

and the address of the memory would change to the needed load address and copied. Then on the low cycle, the

address would revert back to the program counter. This was like a two cycle process but only using one clock pulse.

2.2.3. Final Product

This design features nine pages in Multimedia Logic. To assemble programs an assembler was developed in

Microsoft Excel. The design works very well. To illustrate this design the user interface is included as Figure 4.

2.2.4. Learning Outcomes

More important than the computer architecture we designed was the understanding of computer architecture we

acquired. When the semester began we knew only how to make a basic ALU or increment through the contents of

memory, but we were able to combine all of our previous knowledge to plan an instruction-set and architecture,

design the logical circuits, and implement the computer using MML. This approach made us comfortable with

alternative architectures and implementations.

Although using MML avoids many difficulties that students may encounter when building real machines, we think

we learned more than we would building a real machine. There are several reasons for this. First, we are not limited

by the physical environment. For example, building a real 8-bit computer requires a lot of wiring. If we connect the

wires incorrectly, it could take (waste) a lot of time to correct. The main purpose of building a computer is not to

learn to be careful, but to understand the computer architecture.

We learned a lot by designing our 16-bit computer. Although the basic principle of building an 8-bit or 16-bit

computer is the same, we actually understand more when we actually need to implement more instructions on our

machine. By limiting our computers to a logical design, most of the teams finished their projects. They enjoyed

their completed products and were happy about their accomplishment. I was very proud of our design and product

after our computer worked. Although we encountered a lot of latency problems from the software, we overcame

them by changing our design, understanding more about our mistakes, putting more effort on designing rather than

connecting physical wires, and discussing more our machines with our teammates. We believe that if we physically

built 16-bit computers, we would not be able to finish our projects within the semester.

2.3 Hardware Project Approach

One team of four students used a hardware kit for learning about computer architecture. This approach used an 8085

microprocessor basic systems course from Elenco Electronics, Inc. The kit consisted of fourteen lessons to teach

computer theory, construction, and programming. The hardware approach was initially very appealing to computer

science students. Hardware development was a more tangible approach than what the other student groups were

using: virtualization of circuitry using a computer program. They began to construct the system, soldering

components together step by step. A short testing procedure followed each step involving soldering. As the

computer began to form via completed steps it came time to finish the program. Finishing the project involved the

creation of a program. It was during this time that they realized they had a problem.

During the initial creation of the computer we had no idea that the ROM had not been preprogrammed. When we

got to the task of programming the ROM manually, frustration set in. Manual in this case meant using eight binary

switches and translating hex into its binary value and writing it to the ROM in a three step process: enter the high

order address bits, enter the low order address bits, and then enter the data. This turned out to be a total disaster due

to the sheer amount of time it took and the need to go back and test every single instruction for functionality. So

even though they were initially very motivated, they lost interest in the details of binary addressing and the data entry

needed to build the console ROM. The level of detail and large number of instructions even with an 8-bit computer

obscured some of the understanding desired for the students. A picture of this unit is given in Figure 5.

Figure 5

3. Conclusions

These projects were done by the student teams. The process of design, implementation, and debugging provided

many learning opportunities and proved to be highly motivational opportunities for the students involved. Students

worked together closely in teams and produced excellent work. The final presentations showed well-developed

understanding of the principles of computer architecture. Patterson says [Pat94] “The processor comprises two

components: data path and control...” These students know what that means because they have built both.

4. Acknowledgements

Three students are co- authors of this paper. Other students involved in the two featured design projects include

George Embrey, Scott Mikolyski, and Darren Salomons. These projects were team efforts and the other members

not participating in authorship are gratefully acknowledged. The authors also thank Xuan Thanh Quach for redesign

of the 8-bit Harvard architecture design to use a multiplexer page. Other projects and teams in the class were the

hardware team (Alex Daw, Wing Ho, and Masae Myoga), the Microcode Alarm Clock Team (Keith Radin and

Deepak Shrestha), and the Matching Game Team (Willy Mariteragi and Samuel Raapoto).

The authors gratefully acknowledge George Mills, the author of Multimedia Logic, for making his logic simulation

package available without cost and including the source code on his web site, http://www.softronix.com/.

5. References

[Bur02] Burch, C (2002), “Logisim: A Graphical System for Logic Circuit Design and Simulation,” ACM Journal of

Educational Resources in Computing, 2(1): March, pp. 5-16.

[Cap] Capilano Computing, http://www.capilano.com/, last accessed 1 June 2006.

[Cla01] Clark, B, A Czezowski, and P Strazdins (2001), “Implementation Aspects of a SPARC V9,” Proc. 25th Australasian

Computer Science Conference, Melbourne, Australia, pp. 23-32.

[Hol03] Holland, M, J Harris, and S Hauck (2003), “Harnessing FPGAs for Computer Architecture Education,” Proc. 2003

IEEE International Conference on Microelectronic Systems Education, pp. 23-32.

[Lars]. Larson, James, http://www.dst-corp.com/james/MMLogic.html

[Laru] Larus, James, SPIM, A MIPS32 Simulator, http://www.cs.wisc.edu/~larus/spim.html

[Les] Leslie, Mathew, http://urchin.earth.li/~mleslie/project.html, last accessed 1 June 2006.

[Mil] Mills, George, Multimedia Logic, available for free download at http://www.softronix.com, last accessed 1 June 2006.

[Mou02] Moure, J, D Rexachs, and E Luque (2002), “The KScalar Simulator,” ACM Journal of Educational Resources in

Computing, 2(1): March, pp. 73-116.

[Nul03a] Null, Linda and J Lobur (2003), The Essentials of Computer Organization and Architecture, Jones and Bartlett

Computer Science, Sudbury, MA.

[Nul03b] Null, Linda and J Lobur (2003), “MarieSim: The MARIE Computer Simulator,” ACM Journal of Educational

Resources in Computing, 3(2): June.

[Pat94] Paterson, David A and John L Hennessy (1994), Computer Organization and Design, The Hardware/Software Interface,

Morgan Kaufmann. ISBN 1-55860-281-X.

[Sta05] Stanley, T (2005), "An emulated computer with assembler for teaching undergraduate computer architecture,"

Proceedings of the Workshop on Computer Architecture Education.

[Tao03] Tao, J, M Schulz, and W Karl (2003), “A Simulation Tool for Evaluating Shared Memory Systems,” Proc. 36th Annual

Simulation Symposium (ANNS’03).

[Ver05] Verbrugge, William G (2005), “Simulated Machine (Assembler): Learning the Anatomy – Then Move to the Tools,”

Proc ISECON 2005, v22 (Columbus OH) 2524.

[Wai01] Wainer, G, S Daicz, L Simoni, and D Wassermann (2001), “Using the Alfa-2 Simulated Processor for Educational

Purposes,” ACM Journal of Educational Resources in Computing, 1(2): December, pp. 111-151.

Figure 1 An example computer using an 8-bit von Neumann design

Figure 2 The accumulator module for the 16-bit von Neumann design

Figure 3 Control module for the 16-bit von Neumann design

Figure 4 User interface for the Harvard architecture design.

Figure 5 The 8085 hardware kit

