
Volume 3, Number 6 http://isedj.org/3/6/ August 1, 2005

In this issue:

Building a Computer Program Grader

Don Colton Leslie Fife
Brigham Young University Hawaii Brigham Young University Hawaii

Laie, Hawaii 96762, USA Laie, Hawaii 96762, USA

Randy Winters
Brigham Young University Hawaii

Laie, Hawaii 96762, USA

Abstract: Students often learn best by doing, and they may learn programming skills best by
writing many programs, ranging from simple to complex. Overworked teachers can be dismayed by
the prospect of grading still more programs per student as well as teaching introductory classes with
ever larger enrollments. We present GradeBot, an automatic grader for computer programming lab
assignments. The automatic grading approach offers substantial advantages and opportunities, but
also some disadvantages and challenges. GradeBot evaluates student programs written in any of
several languages, including C, C++, Java, Perl, Tcl, and MIPS assembler. Guidance for similar
projects is provided through a discussion of the construction and operation of GradeBot.

Keywords: GradeBot, grading, programming, automated grading, testbed, C, C++, Java, Perl,
Tcl, MIPS, SPIM, cheating

Recommended Citation: Colton, Fife, and Winters (2005). Building a Computer Program
Grader. Information Systems Education Journal, 3 (6). http://isedj.org/3/6/. ISSN: 1545-679X.
(Also appears in The Proceedings of ISECON 2004: §2233. ISSN: 1542-7382.)

This issue is on the Internet at http://isedj.org/3/6/

ISEDJ 3 (6) Information Systems Education Journal 2

The Information Systems Education Journal (ISEDJ) is a peer-reviewed academic journal
published by the Education Special Interest Group (EDSIG) of the Association of Information
Technology Professionals (AITP, Chicago, Illinois). • ISSN: 1545-679X. • First issue: 8 Sep 2003.
• Title: Information Systems Education Journal. Variants: IS Education Journal; ISEDJ. • Phys-
ical format: online. • Publishing frequency: irregular; as each article is approved, it is published
immediately and constitutes a complete separate issue of the current volume. • Single issue price:
free. • Subscription address: subscribe@isedj.org. • Subscription price: free. • Electronic access:
http://isedj.org/ • Contact person: Don Colton (editor@isedj.org)

2005 AITP Education Special Interest Group Board of Directors

Stuart A. Varden
Pace University
Past President

Paul M. Leidig
Grand Valley St Univ
2005 EDSIG President

Don Colton
BYU Hawaii

Vice President

Ronald I. Frank
Pace University
Secretary, 2005

Kenneth A. Grant
Ryerson University
Dir 2002-2003, 2005

Albert L. Harris
Appalachian St Univ

JISE Editor

Jeffrey Hsu
Fairleigh Dickinson
Director, 2004-2005

Dena Johnson
Tarleton State Univ
Membership, 2005

Jens O. Liegle
Georgia State Univ
Director, 2003-2005

Marcos Sivitanides
Texas St San Marcos
Director, 2004-2005

Robert B. Sweeney
U of South Alabama
Treasurer, 2004-2005

Margaret Thomas
Ohio University
Director, 2005

Information Systems Education Journal Editorial and Review Board

Don Colton
Brigham Young University Hawaii

Editor

Thomas N. Janicki
University of North Carolina Wilmington

Associate Editor

Amjad A. Abdullat
West Texas A&M U

Samuel Abraham
Siena Heights U

Robert C. Beatty
N Illinois Univ

Neelima Bhatnagar
U Pitt Johnstown

Tonda Bone
Tarleton State U

Alan T. Burns
DePaul University

Lucia Dettori
DePaul University

Ronald I. Frank
Pace University

Kenneth A. Grant
Ryerson Univ

Robert Grenier
Augustana College

Owen P. Hall, Jr
Pepperdine Univ

Mark (Buzz) Hensel
U Texas Arlington

James Lawler
Pace University

Jens O. Liegle
Georgia State U

Terri L. Lenox
Westminster Coll

Denise R. McGinnis
Mesa State College

Peter N. Meso
Georgia St Univ

Therese D. O’Neil
Indiana Univ PA

Alan R. Peslak
Penn State Univ

Robert B. Sweeney
U of South Alabama

William J. Tastle
Ithaca College

Margaret Thomas
Ohio University

Jennifer Thomas
Pace University

Stuart A. Varden
Pace University

Charles Woratschek
Robert Morris Univ

EDSIG activities include the publication of ISEDJ, the organization and execution of the annual
ISECON conference held each fall, the publication of the Journal of Information Systems Education
(JISE), and the designation and honoring of an IS Educator of the Year. • The Foundation for
Information Technology Education has been the key sponsor of ISECON over the years. • The
Association for Information Technology Professionals (AITP) provides the corporate umbrella under
which EDSIG operates.

c© Copyright 2005 EDSIG. In the spirit of academic freedom, permission is granted to make and
distribute unlimited copies of this issue in its PDF or printed form, so long as the entire document
is presented, and it is not modified in any substantial way.

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

ISEDJ 3 (6) Colton, Fife, and Winters 3

Building a Computer Program Grader

Don Colton, Leslie Fife, Randy Winters

School of Computing
Brigham Young University Hawaii

Laie, Hawaii 96762, USA
don@cs.byuh.edu

Abstract

Students often learn best by doing, and they may learn programming skills best by writing

many programs, ranging from simple to complex. Overworked teachers can be dismayed by

the prospect of grading still more programs per student as well as teaching introductory

classes with ever larger enrollments. We present GradeBot, an automatic grader for computer

programming lab assignments. The automatic grading approach offers substantial advantages

and opportunities, but also some disadvantages and challenges. GradeBot evaluates student

programs written in any of several languages, including C, C++, Java, Perl, Tcl, and MIPS

assembler. Guidance for similar projects is provided through a discussion of the construction

and operation of GradeBot.

Keywords: GradeBot, grading, programming, automated grading, testbed, C, C++, Java,
Perl, Tcl, MIPS, SPIM, cheating

1.0 Introduction

In our experience, when intermediate-level

programming students (in Computer Science

or Information Systems) are given one pro-

gramming assignment each week through-

out the semester, they are generally

successful at that pace of learning.

However, when novice programming stu-

dents in a Programming I course were as-

signed at the same pace, the results were

not good. By show of hands, 80 to 90 per-

cent of each class claimed to have never

programmed before in any language, and

nearly all the rest had done only a few pro-

grams in Microsoft Visual BASIC. Many of

the students experienced difficulty in com-

pleting the assigned labs. Because of this

difficulty, some students gave up in frustra-

tion. Others in desperation acquired “exten-

sive unauthorized help” which did not result

in actual learning of the assigned material.

It was felt that inexperienced students were

not successful with the pace of one program

per week because it forced them to learn

and demonstrate too much new material per

program. Rather than giving even fewer

assignments, it is felt that many more pro-

grams should be assigned, but with each

demonstrating fewer new concepts. A

change was made to better support the stu-

dents by assigning and grading four or five

programs per week instead of only one.

Although this seemed like the right thing to

do for the students (and still seems so), it

presented difficulties for the instructor. It

created a huge grading burden for which

GradeBot became the solution.

The thesis of the GradeBot project is that

student learning in introductory program-

ming classes can be effectively facilitated by

the use of an automatic program grader.

2.0 Motivations

The initial and most important motivation

was to support having students write more

programs with a smaller increment in diffi-

culty from each program assignment to the

next. The desire was to do this without hir-

ing more teachers or using more teacher

time.

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

ISEDJ 3 (6) Colton, Fife, and Winters 4

Starting from the idea of using a robotic*

program grader, a few other expected bene-

fits were identified: students would get

faster responses to their program submis-

sions, and distance-education courses might

be taught at remote locations more easily.

In addition students might engage in inde-

pendent study or review with nearly no im-

pact on instructor time.

(*Robotic: It should be noted that the term

“robotic” as used in this paper does not refer

to the classical device that senses and ma-

nipulates its environment. Instead, robotic

refers here to an automated process that

was previously done by a human, and is still

done in somewhat the same way that a hu-

man would do it. It is also an homage to the

name “Robo Judge” that identifies the soft-

ware used in some ACM Programming com-

petitions.)

Paradigm Shift: It is important to note that
automatic grading offers a complete para-

digm shift from traditional grading. In tradi-

tional grading, the student turns in the

assignment one time and a human grader

evaluates it one time. In automatic grading

the student is allowed to turn in the assign-

ment many times without penalty, and the

automatic grader evaluates each one quickly

and patiently. Credit is granted when the

student program actually works completely

correctly, but not before that time. The

student is not penalized for submitting ten

or one hundred times before achieving a

correct result. It is typical for each student

to submit each lab about twenty times be-

fore getting it right. Most of the submissions

are believed to incrementally resolve small

problems such as output formatting, but this

hypothesis has not been tested.

The opportunity to submit again and again is

crucial to the operation of this system. Be-

cause there is no penalty for failure, stu-

dents can be held to a higher standard, and

required to try, try again until they achieve

success. In such a setting, even small mis-

takes such as errors in spacing of the final

printout, can be pointed out and not ac-

cepted. The students are told that in the

real world, programs are required to perform

with exactness and accuracy, and that test-

ing against a suite of examples is common.

Ultimately this requirement of perfection

seems fair because small and simple mis-

takes can be corrected in small and simple

ways, while difficult mistakes can only be

corrected with much careful thought. A

human is not required to evaluate the seri-

ousness of each mistake and to assign par-

tial credit accordingly.

Tutors are provided nightly from 3:00 PM

until midnight to help students who have

difficulty.

While automatic grading offers a complete

paradigm shift, it does not require it. It is

still possible and desirable to involve a hu-

man grader as an evaluator of program style

or to ensure that the program was written

according to specifications. However, such

involvement is not required.

More Programs per Student: Robotic
grading would allow a move from 5 or 10

programs per student per semester toward a

target of 50 programs per semester. Rather

than the steep learning curve of one pro-

gram for each topic, e.g., variables, if/else,

loops, functions, and arrays, one might have

many more programs, resulting in a more

gradual learning curve. Each new program

would introduce only one small concept

rather than something larger.

More Students per Teacher: With robotic
grading of most or all assignments and

tests, it seemed that faculty could be more

productive per contact hour by admitting

more students into each class and teaching

larger sections. The preparation time for a

lecture promised to be about the same

whether there were 15 students or 50 stu-

dents.

Faster Response To Students: With a

robotic grader in place, students would be

able to submit their lab work and find out

immediately whether it was “correct” or not.

This seemed much better than collecting the

programs in class on paper, or diskette, or

sent by email, or deposited in a folder on the

campus file server. Extensive hand grading

was bad enough but managing and returning

all the work with comments was also a bur-

den.

Automatic Comments To Students: To
the extent the robotic grader could evaluate

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

ISEDJ 3 (6) Colton, Fife, and Winters 5

student work, it might also identify and

coach in solving typical specific problems

noticed for each student, such as forgotten

newlines or extra whitespace (e.g., spaces,

tabs, carriage returns, newlines), sometimes

much more patiently and clearly than the

instructor may have done.

No More Partial Credit: As mentioned
above, one happy side effect of immediate

response to students was the practical op-

portunity to require perfect programs from

the students. Rather than guess how close

they were to achieving the goal, they were

simply told what test case led to their failure

and told to fix it and resubmit. They were

then left with the challenge of figuring out

why their program behaved wrongly in that

case. This seems more true to life.

Last-Mile Learning: By debugging their
own programs, students engaged in “last

mile learning.” This is the learning that oc-

curs when one finally finishes something,

and does not merely imagine that it is “basi-

cally” finished. It is sometimes said that

“the devil is in the details.” By confronting

that devil more true learning occurs.

Distance Education: It was imagined that
the introductory programming course could

be automated to such an extent that lec-

tures could be recorded on video and the

entire course could be delivered, conducted,

and graded almost without human interven-

tion. To make distance education possible,

programming assignments were submitted

by students through the Internet, originally

by email. Because email is the most ubiq-

uitous application on the Internet, this

meant that the course could theoretically be

conducted remotely to students anywhere so

long as they had email.

Open Entry, Early Exit: It was believed
that by using the Distance Education model,

a tutor could handle questions and an in-

structor would be needed only rarely to re-

solve problems. Under this model, it would

be possible to let students enroll at any time

and complete at any time, and not just from

start to end of semester. Assignment dead-

lines could be tailored to each student's per-

sonal timeline. This would allow particularly

challenged students to take more than one

semester to finish the class.

3.0 Grading Model

In this section, the grading model is consid-

ered. A progression of developments is pre-

sented here, showing how the grading

engine developed to its current status.

GradeBot works by comparing the behavior

of a student program to a defined standard.

The behavior consists of the outputs that are

produced by the student program. There is

no attempt to “understand” the student pro-

gram, such as would be done by a human

that examined the source code. If the stu-

dent program performs as required, it is

declared to be correct, or “correct enough

for our purposes today.” If the student pro-

gram fails, GradeBot can identify the dis-

crepancy in the student program output but

cannot identify the bug in the student pro-

gram.

3.1 Source Code Submission

Students were to submit their programs as

source code in any of the target languages.

The following languages are currently sup-

ported: C, C++, Java, Perl, Tcl, and MIPS

assembler (SPIM). Compilers (or equiva-

lent) for these languages were available on

the Linux system that was set aside to do

the grading. As a first step, the program

was compiled with all warnings enabled. If

the program did not compile cleanly, it was

rejected and the student was given no

credit. The student was notified of this re-

sult.

Once the program was compiled cleanly, a

series of zero or more tests would be per-

formed. Each test followed a standard in,

standard out evaluation model.

3.2 Standard In, Standard Out

The original grading concept was to provide

two hand-made, hand-verified files for each

test case. One would be the input (standard

in) for the program. The other would be the

desired output (standard out). The student

program would be compiled and executed.

The input file would be fed into the student

program. The output results would be col-

lected. Finally the collected results would be

compared with the desired output. If they

were identical, the next test would ensue.

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

ISEDJ 3 (6) Colton, Fife, and Winters 6

3.3 Helpful Responses

In the ACM Robo Judge model mentioned

above, contestants are only told whether

they passed or not, and in case of failure

whether there is a compiler error, a runtime

error (such as divide by zero), a wrong an-

swer, or a right answer incorrectly format-

ted.

For instructional purposes it was felt that if

there were a discrepancy between the de-

sired output and the actual output, the failed

test case should be revealed to the student.

This would allow the student to more easily

debug his or her program. It also avoided

most cases of students protesting that their

program was actually right, they were abso-

lutely sure. A counter-example served as

very effective proof.

The UNIX diff command was used to com-
pare the student program produced output

to the desired “correct” output. The diff

results were translated into plain English and

reported to the student, saying: “Your first

error is on line 5 of your output.” GradeBot

might add “Please check your spacing” or

“Please check your punctuation” if it could

identify that as the problem. Both the pro-

duced output and the correct output would

then be printed so the student could com-

pare.

Ideally the grader would point out the place

where the student program was wrong,

rather than the place where the output was

wrong. Humans can often do this, but it is

beyond the capabilities of this robotic sys-

tem.

There was some discomfort that this was

gradually revealing all the test cases to the

students, and the students could then de-

velop programs that treated each test case

as a special case, hard-coding the output

once the test case could be recognized. It

seemed unlikely that students in the intro-

ductory classes would have this sophistica-

tion, but it was enough of an issue that it is

addressed below.

3.4 Infinite Loops

Infinite loops were foreseen as a problem

from the first. To deal with this, a timed

execution facility called timed-run was

used. It was already present on our Linux

system, and is part of the expect package
(Libes, 1995, p.17). Because the programs

were simple and the processor was fast, it

was felt that a few seconds should be

enough clock time to do almost anything.

Therefore, execution time was limited to two

seconds in the general case. This has

proven to be ample for all but a few special

programs.

Not foreseen were infinite loops with print

statements nested inside. The first occur-

rence was a program that generated

100,000 identical lines of output in the two

seconds before it timed out. It took an hour

to email the results back to the student, who

was in just the next room.

Two measures were adopted to mitigate the

infinite loop print problem. First, before

mailing, identical lines were recognized and

“compressed.” Any time there were three or

more lines that were identical, only the first

would be returned, followed by a statement

such as “the next 183245 lines are the

same.” This helped for the infinite identical

print problem, but was not general enough.

The second measure was to look at the size

of the desired output and use it as a guide

for what was reasonable. It was decided

that if the desired output consisted of n

lines, the student would be allowed 2n+10

lines and the rest would be counted and

truncated. (The value 2n+10 was chosen to

allow students a reasonable number of extra

lines of printout; n would be minimal, 2n

allows some extraneous lines, and the +10

allowance handles the case of very short

output files (small values of n). The impor-

tant thing was to give the student a good

view of his output without falling into an

infinite output.) That was a more satisfying

response. In four years there have been no

further infinite emails, even though they are

still possible if a student produces a single

line that is infinitely long.

3.5 Program Crashes

Another problem was the core dump files

that were created by student programs.

Those were discovered to take up a substan-

tial amount of disk space. To deal with them

a nightly “cron job” was set up to remove
all core files within the testing directory tree.

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

ISEDJ 3 (6) Colton, Fife, and Winters 7

3.6 Machine Crashes

It was recognized that a clever and malevo-

lent student could submit a program that

would crash the GradeBot server. In C,

while (1) fork();

would be such an example. In our case such

students can be identified and handled be-

cause GradeBot keeps a history of all sub-

missions. If not, the input file could be pre-

screened to watch for specific constructs

such as the word “fork.”

One or two clever and motivated students

have found ways to crash the server, but

they have been proud of their achievements

and have been willing to accept acknowl-

edgement for their cleverness. They have

not been an ongoing source of annoyance.

In four years there has been no need to deal

with this, and the plan is to deal with it when

it becomes a problem.

3.7 Creating New Labs

To keep the programs from becoming too

well known, with solutions too easily avail-

able, it seemed important that labs could be

created and modified easily.

Initially the creation of new labs proved to

be a lot of work, both for the detailed in-

structions that were prepared for the stu-

dents and for the test cases that were

prepared and verified by hand.

It was helpful to realize that with the test

cases revealed to the students, there was

little need for most of the file-detail instruc-

tions to the students, such as the exact for-

mat required in the output. The test cases

were in effect the detailed instructions, at

least to a level that might be acceptable for

a first course. It was simple to augment the

test cases with a paragraph or two outlining

the task and report that to the student as

part of the GradeBot response.

There are some tradeoffs with having de-

tailed instructions. On the one hand, giving

detailed instructions can help the student

plan ahead and avoid frustration. On the

other hand, many students do not under-

stand the fine details in the instructions until

they have a general version of the program

working, and having a number of special

cases delineated only serves to confuse

them. On yet another hand, in many real-

world scenarios, obscure test cases are only

discovered in beta test or after product re-

lease.

By careful arrangement of the test cases,

the fundamental program is typically tested

before the special cases are revealed.

Although it was anticipated that new labs

would be created frequently, in fact only a

few new labs are created each year, mostly

in response to new learning objectives rather

than to avoid student cheating.

4.0 Grading Engine

With the original grading model, students

could in n tries discover all n test cases be-

ing used, since there were a finite number,

and n was generally small for hand-verified

test data.

4.1 Plug-In Test Modules

To get beyond hand-verified test data and a

relatively small number of test cases it was

seen as more efficient, enjoyable, and reli-

able to code a program to test the student

program. The program, called a plugin,

would generate random inputs and matching

outputs to test the student program.

As the plugin ran, each time it wanted input,

the random number generator was called to

create the appropriate input. The input was

then saved for the student program and also

processed by the plugin program. Each time

the plugin generated output, it was saved

for comparison against the student program.

For increased modularity, the plugin pro-

gram was generally divided into two parts: a

prototype program that behaves essentially

like the student program, and a random

input generator. This division of labor

proved to be helpful.

In an actual test scenario, the prototype

program would be run a number of times,

usually ten to thirty times. After each run,

the student program was executed and re-

sulting outputs were compared. If the out-

puts matched exactly, the process

continued. If not, the offending input/output

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

ISEDJ 3 (6) Colton, Fife, and Winters 8

pair was reported back to the student and

the process ended. If all the tests were

passed, the student was sent a congratula-

tory message and the instructor was sent a

completion message for entry into the grade

book.

Appendix A includes specific details about

the random input generation together with a

complete and annotated example of a pro-

gram to grade a simple student assignment.

4.2 Interactive Dialogue

Over time, the instructor was occasionally

confronted by examples of student code that

worked well enough for GradeBot but were

still wrong.

One typical example of this would be a pro-

gram to ask for a number, read it in, add

one to it, and print the result. The student

program could instead read in the number,

add one to it, and THEN ask for the number

and print the result. Using standard in and

standard out destroyed the interleaving se-

quence, the “dialogue,” between input and

output. All inputs could be read first, and

then all outputs created. But the intention

of the instructor was to have inputs and

outputs interleaved in a more reasonable

fashion.

A major overhaul of GradeBot was con-

ducted to get away from the batch in-

put/output model. An interactive dialogue

model was adopted for most program grad-

ing.

Instead of comparing a whole output file, the

student program outputs were verified one

line at a time, as they were generated. Simi-

larly, the inputs were provided one line at a

time as they were needed. With this im-

provement, the student could be forced to

prompt for input before actually reading the

input.

An unexpected benefit of this approach was

the fact that infinite printing loops were no

longer a problem. At the first sign of trou-

ble, the student program was terminated

and the remaining dialogue was modeled for

the student. Only the first error line was

reported.

4.3 Longer Outputs

With the advent of computer-generated test

files, it because practical to have longer

input and output files. When all inputs and

outputs were hand-generated and hand-

verified, there was a strong tendency to

keep things short and simple. This resulted

in toy tests.

At the same time, some programs could take

much longer than the two seconds tradition-

ally allowed. For example, one lab requires

the students to download a web page, parse

it for links, and then download the files it is

linked to, eventually building a complete site

map of a web site. This lab could easily run

five minutes for a web site with one to two

hundred web pages. For another example,

given a set of classes to schedule, together

with the semesters in which each class is

offered and the prerequisites for each class,

the student was required to find a shortest

possible graduation plan. For most inputs

the program was very fast, but for some

inputs the processing was NP complete.

GradeBot was easily modified to allow longer

timeframes. The prototype program was

timed and the student program was allowed

2t+10 seconds to run, where t was the time

taken by the prototype program.

4.4 Throttle

GradeBot was built on a submit/reply model.

Students came to expect the reply within a

second or two. Occasionally there would be

a program which legitimately took longer

than a few seconds to run. In such a case,

the student was supposed to wait until the

response came back.

Of course, students are about as patient as

most people. This means that when the

answer did not appear after five seconds,

they would assume the program did not

submit properly, and would submit it again.

And again. And again.

It was discovered that a single student could

submit a long-running lab perhaps dozens of

times, and GradeBot would dutifully try to

run them all simultaneously. As the server

did its context switching from one task to

another, thrashing would result. This would

make the response time even slower for

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

ISEDJ 3 (6) Colton, Fife, and Winters 9

everyone and eventually it led to very long

delays. Finally, the original student would

get back several replies over a span of sev-

eral minutes. Most of the replies were re-

dundant.

This tended to happen a lot toward the end

of the semester, when the most complicated

programs were due, and as students were

frantically trying to complete as many pro-

jects as possible before the deadline.

To solve the problem, GradeBot creates a

“lock” (implemented as a zero-length file in

a special directory) while a student program

is processed. If a subsequent request is

received from the same student, it also cre-

ates a lock. As long as the new lock is not

the oldest lock, GradeBot sleeps a few sec-

onds and checks again. Finally, the new test

runs and the lock is deleted. Additionally, if

GradeBot decides to sleep, it sends an email

back to the student stating that GradeBot is

still testing a lab that the student previously

submitted, and as a matter of policy the labs

will be done one at a time.

To further prevent multiple submissions of

the same program, for long-running tests

GradeBot would send an early reply stating

that the first few tests were successful and

the longer tests were starting, and please do

not submit again for at least 20 minutes, or

until you get the rest of the results.

This resolved most of the difficulty from

duplicate requests. However, the multiple

email responses complicated matters for the

web interface that was eventually built.

5.0 Worrying About Cheating

Some students were able to complete the

labs but were still unable to perform on pro-

gramming quizzes and tests given in class.

Interviews with the department-provided

tutors revealed the unsurprising fact that

students were helping each other. Such

help was explicitly forbidden.

At first, the instructor response was frustra-

tion and indignation, but this did not solve

the problem. Entire classes were berated as

a group to eliminate this cheating. It may

have felt good to the instructor but it did not

help to solve the problem.

There seemed to be two distinct elements

contributing to the forbidden behavior. First,

students seemed less upset about cheating

in their interactions with a machine than

they would in their interactions with a fellow

human. Computer games often have “cheat

codes” that can be downloaded. To many

students, using cheat codes is acceptable.

Second, as demonstrated by the 2001 GRE

CS Subject Test cheating scandal, in some

cultures there is a strong us-versus-them

mentality relating students to teachers.

Students are culturally expected to assist

each other, even when in defiance of in-

structor mandates. This cultural issue was

more difficult to work around, and eventually

the best solution seemed to be the formal

acceptance of group work as a valid way to

study.

5.1 An Age of Miracles

To identify cheaters, GradeBot incorporated

a complete history of all lab work ever sub-

mitted by students. Each submission is con-

verted into a standard form by, for example,

compressing whitespace and removing string

constants. A checksum is taken of the re-

sulting code. When a student program com-

pletely passes a test, this checksum is

stored in a database. When a new student

program is submitted, this checksum is

compared with the database. If a match is

found, the full programs are compared. If a

match is still found, an incident report is

emailed to the instructor. The incident re-

port details the “miraculous” fact that two

programs were identical.

The initial result was lots of email. It was

concluded that for a fairly simple lab, or for

a lab that represented only a small change

from sample code given in the textbook, the

odds of duplicate programs were quite high.

This was also true for programs that were

explained thoroughly in class by the instruc-

tor or in the lab by the tutors. Not all of this

activity could be called cheating.

The next step was to look at the predeces-

sors to any code match. For each match, the

miracle report was modified to list all the

previous identical submissions that had been

received. If many students shared the same

code, generally there was a structural rea-

son for that. If only one or two students

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

ISEDJ 3 (6) Colton, Fife, and Winters 10

shared the same code, it was much more

defensible to say that the students must

have gotten it from each other. Still, one

incident was enough to be cautious, but did

not provide enough evidence to “convict.”

The next step was to modify the miracle

report to include past incidents of identical

code involving that student. This turned out

to be very helpful. When student A had code
that was miraculously like that of student B

on one assignment, and like that of student

C on another assignment, and like that of

student D on yet another assignment, it

could be attributed to the fact that there

were a limited number of common ways to

write the program, given that the students

attended the same lectures and visited the

same tutors. But if student A had code like

that of student B on quite a few labs, this

indicated a fairly strong level of collusion.

5.2 Per Student Customization

Before the decision to lighten up on the ap-

parent cheating problem, GradeBot was

modified to allow each student to receive a

similar but not identical problem when com-

pared to his neighbors. The goal was to

provide better evidence against cheaters

because they could not use the excuse that

they were solving the same problem. If

identical submissions were detected, the

source of the original program could be

more easily and reliably identified and a

punishment could be more fully justified.

This provided an interesting diversion during

the development of GradeBot, but did not

meet its goal of better identifying and pun-

ishing offenders. Recently developed test

programs generally take no advantage of

this feature.

5.3 Overcoming Cheating

The ultimate result of all the worrying about

cheating was a conclusion that technical

means could detect simple forms of copying,

but effective police action could not be main-

tained because of the cultural desire to work

together and the ease with which students

could modify their copied work just enough

to avoid being caught. For these reasons it

became easier to quit trying to directly con-

trolling cheating on the labs and to instead

rely on testing in a controlled setting. A

large share of the final grade now rests on

in-class tests. Students are explicitly per-

mitted to do their lab work in concert with

anyone they want, but are reminded that

one important goal is the learning they will

need to demonstrate on the in-class tests.

6.0 Results

GradeBot has been operational for four

years, handling an average of 400 students

per year, each submitting roughly 1000 lab

assignments to complete 50 labs per class,

mostly in the Programming I and Program-

ming II courses. It has been used with a

variety of student programming languages,

including C, C++, Java, Perl, and MIPS (in

the computer organization / architecture

class).

Instructors are very pleased with this tool,

and desire to see it continued, but they are

not totally satisfied. There are tradeoffs.

Because faculty are not required to see

every submission by every student, they

tend to lose touch with the abilities of their

students. Additional tools not reported here

have been implemented to allow the teach-

ers to monitor the progress of their students

and identify those that are falling behind.

Also, because student work is not reviewed

by another set of eyes, there are stylistic

issues that are not well addressed, such as

commenting and indenting. Additionally,

students can sometimes short-circuit an

assignment, but writing a single routine to

achieve a goal when the assignment was to

create and use certain subroutines or data

structures, or do something else in a par-

ticular way.

Students have reported having a love/hate

relationship to GradeBot. Most students love

the fact that they get immediate feedback,

and can know that their assignment is com-

pleted and accepted for full credit. A few

students hate the fact that GradeBot re-

quires extreme attention to such details as

spelling and spacing in their output, and that

occasionally the appearance of blank lines in

the output can be hard to plan (e.g., should

the blank line print outside the top of the

loop, inside the top of the loop, inside the

bottom of the loop, or outside the bottom of

the loop).

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

ISEDJ 3 (6) Colton, Fife, and Winters 11

The quality of student programming skills

seems to have improved a lot, but there is

no control group, so this improvement must

be regarded as anecdotal evidence. The fact

that the students who complete the intro-

ductory classes have generally become ca-

pable programmers supports the hypothesis

that automatic grading is a feasible approach

to working with introductory programming

classes.

7.0 Future Work

The GradeBot core provides evaluation of

one assignment for one student at a time.

Beyond this basic ability, a web interface has

been created for students, and is very popu-

lar and is being used with substantial suc-

cess. Also, a rudimentary instructor

interface has been created and is being

used. These tools have made GradeBot

more convenient. Early versions required

the instructor to be a programmer / hacker,

and the current version still requires such a

person to provide maintenance between

semesters and to solve special situations

that arise. The local software engineering

class is planning to develop a better instruc-

tor’s interface. Both the student web inter-

face and the planned instructor interface

may be reported in the future.

Additionally, with proper packaging this tool

might be released to a broader audience,

and it may become feasible to conduct a

controlled study to see what quantitative

effect this learning method has in compari-

son to hand-graded programming assign-

ments. Interested parties are invited to

contact the authors.

References

Chang, Carl, Peter J. Denning, James H.

Cross II, Gerald Engel, Robert Sloan,

Doris Carver, Richard Eckhouse, Willis

King, Francis Lau, Susan Mengel, Pradip

Srimani, Eric Roberts, Russell

Shackelford, Richard Austing, C. Fay

Cover, Gordon Davies, Andrew McGet-

trick, G. Michael Schneider, Ursula Wolz

(2001). “Computing Curricula 2001

Computer Science,” Final Report, 15 Dec

2001. Jointly published by IEEE-CS and

ACM.

Libes, Don (1995). Exploring Expect.

O'Reilly. ISBN: 1-56592-090-2.

Molluzzo, John (1996). C for Business Pro-

gramming. Prentice-Hall. ISBN: 0-13-

482282-X.

Ousterhout, John (1994). Tcl and the Tk

Toolkit. Addison-Wesley. ISBN: 0-201-

63337-X.

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

ISEDJ 3 (6) Colton, Fife, and Winters 12

Appendix A

This appendix provides details of the random

input generator together with a simple anno-

tated example of a program grader plugin.

Tcl/Expect was chosen as the language for
GradeBot for four reasons. First, a string-

oriented language was desired because the

grading process would require the genera-

tion and comparison of strings. Second,

because of the large number of programs to

be graded, it was felt that each grader

should be stored in some sort of library and

plugged in at run time. Third, the primary

author of GradeBot had recently done a lot

of programming in Tcl and wanted to build

on this recent experience. Fourth, (after Tcl

was selected) it was discovered that expect
was a superset of Tcl and provided a good
way to communicate with the student pro-

gram as a separate process.

Perl would probably be another good lan-

guage for implementing such a project.

A.1 Random Numbers

Tcl does not provide a native random num-

ber generation facility. The following proce-

dure was developed to provide this

capability.

returns a 15-bit integer: 0..32767
proc random15 {} { global _R
set _R [expr $_R * 1103515245 + 12345]
expr int ($_R / 65536) % 32768 }

The plugin for grading a lab provides a cor-

rectly functioning prototype of the student’s

program. As the prototype program runs,

each time it wants input, the random num-

ber generator is called to create the appro-

priate input. The input is then saved for the

student program and also processed by the

prototype program itself. Each time the

prototype generates output, it is saved for

comparison against the student program

output.

The prototype program was then run a num-

ber of times, usually ten to thirty times.

After each run, the student program was

compared. If the outputs matched exactly,

the process continued. If not, the offending

input/output pair was reported back to the

student and the process ended. If all the

tests were passed, the student was sent a

congratulatory message and the instructor

was sent a completion message for entry

into the grade book.

The following procedures were developed

and found useful for the creation of random

inputs:

random(low,high) returns an integer uni-
formly distributed between low and high.

pick(list) returns a random element of the
list. Each element is equally likely to be

returned.

permute(list) returns a uniformly random

permutation of the list.

rlog(low,high) returns a number between
low and high, uniformly distributed in the log

domain, that is, equally likely to be between

10 and 100 as between 100 and 1000.

random15 returns a 15-bit uniformly ran-
dom integer (0..32767).

As a measure of relative usefulness, out of

85 test programs in use last semester, ran-

dom is used 222 times, pick is used 132

times, permute is used 33 times, rlog is

used 28 times, and random15 is used (di-

rectly) 3 times.

A.2 Sample Plugin

Following is an annotated example of a lab

assignment test program. This program is

based on a programming problem (chapter

1, problem 6) in Molluzzo (1996, p.22).

Lines have been shortened to fit this paper.

proc sim in { global lab; start
 get "Type in four letters: "
 put $in
 set c3 [string index $in 2]
 get "The third letter was $c3.\n"
 runLog $lab [list sio [eof]] {st 0}
}

proc lab$lab {} { global lab errCt
 sim "wxyz\n"; # free sample
 if { $errCt } return; sim "abcd\n"
 do 5 {
 set ab "[pick a b c][pick d e f]"
 set cd "[pick g h i][pick j k l]"
 if { $errCt } return; sim "$ab$cd\n" }
}

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

ISEDJ 3 (6) Colton, Fife, and Winters 13

The entire sample shown above is stored as

a file in the lab directory for the cs101
course. The file is sourced (read) into

GradeBot when the lab assignment has been

identified.

The file contains two procedures, sim and

lab$lab. The sim procedure is intended to

perform (simulate) one complete test of the

student program. The lab procedure calls

sim some number of times to perform a

variety of individual tests of the student

program.

With rare exceptions, test programs are

written in Tcl, the “tool command language”

invented and developed by John K. Ouster-

hout (1994) that forms the basis for the

expect utility mentioned above.

proc introduces a new procedure. sim is

the name of the first procedure. in is the
sole formal parameter to that procedure,

and is passed by value. Curly braces en-

close the body of the procedure. global
introduces a global variable, lab. All other
variables are local. start calls another pro-
cedure to prepare the input and output cap-

ture routines.

Customary usage is to provide a sim routine

for each test program, and for its parame-

ters to be the varying elements of a test

case. In this example, the sole element of

the test case is a character string that will be

presented to the student program as input.

get specifies a string (in this case a prompt)
that must be presented by the student pro-

gram. In this case, the prompt is “Type in

four letters:” followed by a space but no

newline.

put specifies a string that will be given as
input to the student program. $in is the
formal parameter, used as the source of

information.

set is the assignment operator in Tcl. c3 is
the variable name (expressed as an Lvalue,

a name to which a value can be assigned,

typically occurring on the “L”eft side of an

assignment statement). The square brack-

ets enclose another command that will be

executed, and whose results will be taken to

initialize the variable c3. string index is a

built-in command that will, in this case, ex-

tract character number 2 (counting from

zero) in the string stored in the in variable.

get again specifies a string to be gotten
from the student program. Slash n (\n)

indicates a newline (carriage return, or line

feed, or both).

The previous commands have prepared the

input-output script to be carried out.

runLog uses expect to carry out the script
as a dialog with the student program. Each

student output is compared to the expected

value. Each time the student program

should be waiting for input, the script pro-

vides the input to be given.

The second procedure, lab$lab, has a global
variable errCt. So long as this counter is
zero, testing continues. If errCt becomes
non-zero, testing will end and credit will be

denied. sim "wxyz\n" provides the free
sample of input and output the student will

be shown to help them understand the task.

It is provided even if the error count is non-

zero (for instance, if the compile failed).

The next simulation is provided only if the

error count is still zero. The second set of

input will be "abcd\n".

do 5 is a shortcut procedure unique to
GradeBot that means “perform this loop five

times.”

pick a b c will return one of those three

letters, each with a probability of 1/3. There

are 81 possible strings that can be gener-

ated in this loop. So long as errCt remains
zero, additional strings will be tried, up to a

limit of five (do 5).

When the end of the lab$lab procedure is

reached with errCt still equal to zero, the
student will receive credit for completing the

lab.

c© 2005 EDSIG http://isedj.org/3/6/ August 1, 2005

