
A Quick Guide to Precedence

Professor Don Colton

Brigham Young University Hawaii

1 What Are We Trying To Do?

When we say something like “three plus two times
five” there are two ways to interpret it. We could do
the plus first, then the times, for an answer of 25.
Or we could do the times first, then the plus, for an
answer of 13.

When there is more than one reasonable answer,
it is called ambiguity.

Humans deal with ambiguity fairly well in most
cases. Often we do not even notice it. Common
sense is called into play and the alternatives are
rated for likelihood or reasonableness. The unlikely
alternatives are dropped. If there is only one left,
we are happy. If there are two or more reasonable
alternatives, we recognize that ambiguity exists.

In a case like 3+2×5, there is not much common
sense to call upon. So we have commonly accepted
rules. These rules are called the rules of prece-
dence.

2 Introduction

Precedence comes from the word precede, mean-
ing to go before, or to happen first.

For convenience and simplicity, mathematicians
have standardized on the precedence of multiplica-
tion before addition. It does not have to be that
way, but by convention we have agreed as a group
to follow that rule.

In the 3 + 2× 5 example, this means we multiply
2 and 5 for a result of 10. We then add 3 for a result
of 13.

If we want the other meaning, we use parentheses
to alter the precedence. We say (3+2)×5, meaning
add 3 and 2 for a result of 5. Then multiply that by
5 for a result of 25.

Writing without parentheses is shorter. Shorter
is more desirable because it is less work. It is less
work to write, but it does require us to memorize the
rules of precedence so we will get the same answer

as everyone else.

3 The Multiply Class

By convention (by common agreement), multiply, di-
vide, and remainder all have the same precedence,
and we do the operations within that class from left
to right. (All of the examples on the quizzes have a
left-to-right precedence within the same precedence
class. There are some classes where the precedence
is right to left, but those will not be on our quiz.)
8/4/2 means 8 divided by 4, then that divided by

2. 8/4=2 and 2/2=1 so the answer is 1.
If we did not follow the left-to-right precedence,

we might have figured it like this: 4/2=2 and 8/2=4
for an answer of 4.

We can see that the order is significant. It makes
a difference.

3.1 The Multiply Symbol

In computer programming, we often use the aster-
isk (*) to represent multiplication. In arithmetic we
are accustomed to using an x (×) to represent mul-
tiplication, but in computer programming we want
the letter x to be a letter, so the asterisk has been
assigned the meaning of multiply.

We say 3*5 is three times five, or 15.

3.2 Integer Divide

For the quizzes in this course, when we divide we are
using integer division. Normally when we think of
division, we think of calculator division, where 5/2
is 2.5. But for this course, 5/2=2r1, five divided by
two is two with a remainder of one.
11/4 means eleven divided by four, but just the

whole-number quotient is kept, which is 2.

3.3 Remainder

The percent sign (%) is used to indicate division, but
we only want the remainder. 11%4 means eleven di-
vided by four, but just the remainder is kept, which
is 3.

Remainder is sometimes called modulus or mod.
Division with remainders is sometimes called “clock
arithmetic” because 11 o’clock plus three hours
equals 2 o’clock on a 12-hour clock: (11+3)%12 is
2.

3.4 Cookies and Children

One example that I frequently use to describe integer
division is my “cookies and children” example. In
this example, we imagine that we have, say, eleven
cookies and four children. We wish to divide the
cookies.

Now, because we are dealing with children, there
are several rules we must follow. (1) We must give
each child the maximum number of cookies. (2) We
must give each child the same number of cookies as
every other child. (3) We must not break any of
the cookies. (4) Any extra cookies are kept by the
“mommy.”
11/4 means eleven cookies, four children. Each

child gets two cookies and there are three cookies left
over for the mommy. The answer is 2 (the number
each child gets).
11%4 means eleven cookies, four children. Each

child gets two cookies and there are three cookies left
over for the mommy. The answer is 3 (the number
the mommy gets).

4 Precedence Tables

Here is the precedence table for the operators used
on the first quiz.

rank operators dir
1 * / % l-r
2 + - l-r

This table means that the top-ranking precedence,
the number one precedence, is shared by multiply
(*), divide (/), and remainder (%). Within that class,
precedence is left-to-right (l-r).

Similarly, the second-ranking (number two) prece-
dence is shared by add (+) and subtract (-). Within
that class, precedence is left-to-right (l-r).

Here is the full precedence table for the operators
used on the quizzes after the first.

rank operators dir
1 * / % l-r
2 + - l-r
3 < <= > >= l-r
4 == != l-r
5 && l-r
6 || l-r

5 The Other Operators

This table introduces several other operators. The
meaning of each operator is explained in a section
below.

5.1 Less Than, Greater Than

At rank three, we have less than (<), less than or
equal to (<=), greater than (>), and greater than or
equal to (>=).

If we say a<b, we mean “is a less than b?” The
answer is yes (true) or no (false). When the answer
is yes, we use 1 (one), representing true. When the
answer is no, we use 0 (zero), representing false.

Thus, 3<5 is 1, because three is less than five, true.
We use <= for “less than or equal to” because the

≤ symbol is not found on most computer keyboards.
We use >= for “greater than or equal to” because

the ≥ symbol is not found on most computer key-
boards.

5.2 Equal, Not Equal

At rank four, we have equal (==) and not equal (!=).
When the answer is yes, we use 1 (one), represent-
ing true. When the answer is no, we use 0 (zero),
representing false.

We use == for “equal to” because the = symbol is
already being used for another purpose. a=b means
to copy the value from b and store it into variable a.
a==b means to compare a and b and answer with 1
if they are the same (equal), and with 0 if they are
different (not equal).

We use != for “not equal to” because the 6= sym-
bol is not found on most computer keyboards. Some
computer languages use <> (less than or greater
than) to mean not equal, but != will be used in this
course.

5.3 Logical And

At rank five, we have “and” (&&), also called “logical
and” (as distinct from “bitwise and”). When the an-

swer is yes, we use 1 (one), representing true. When
the answer is no, we use 0 (zero), representing false.

What does “and” mean? We are combining two
quantities. How do we do it?

When we say “the sky is blue and I am happy,”
we are combining two statements. The first is “the
sky is blue.” The second is “I am happy.” We can
determine the truth of each statement separately.
Look outside. Is the sky blue? If so, then the truth
value of the first statement is 1 (meaning “true”).

When both statements are true, the resulting com-
pound statement is true. If either statement is false,
the resulting compound statement is false. That is
the way that “and” works.

The truth table for “and” looks like this:

expression value
1 && 1 1
1 && 0 0
0 && 1 0
0 && 0 0

We also have a convention for what to do if the
input numbers are not one or zero. All non-zero
numbers are treated as “true.” Only zero is treated
as “false.” In particular, both positive and negative
numbers are “true.”

Thus, 5&&0 is false, -7&&12 is true, and 0&&4 is
false.

5.4 Logical Or

At rank six, we have “or” (||), also called “logical
or” (as distinct from “bitwise or”). When the answer
is yes, we use 1 (one), representing true. When the
answer is no, we use 0 (zero), representing false.

What does “or” mean? We are combining two
quantities. How do we do it?

When we say “the sky is blue or I am happy,” we
are combining two statements. When either state-
ment is true, the resulting compound statement is
true. If both statements are false, the resulting com-
pound statement is false. That is the way that “or”
works.

The truth table for “or” looks like this:

expression value
1 || 1 1
1 || 0 1
0 || 1 1
0 || 0 0

Once again, non-zero inputs are treated as “true.”
Only zero is treated as “false.”

Thus, 5||0 is true, -7||12 is true, 0||4 is true,
and 0||0 is false.

This version of “or” is also called inclusive or be-
cause it includes the case where both statements are
true. In legal writing it is often phrased “and/or.”
There is another version of “or” called exclusive or
whose truth table looks like this:

expression value
1 ^ 1 0
1 ^ 0 1
0 ^ 1 1
0 ^ 0 0

With “exclusive or” (xor) the result is true when
one statement or the other, but not both, is true.
Exclusive or is also called parity. “and” and “or”
are available as both logical operators and as bitwise
operators, but “xor” is often restricted to the bitwise
domain.

5.5 Bitwise Operators

We have referred to “bitwise and,” “bitwise or,” and
“bitwise xor” in the paragraphs above. In this sec-
tion we will touch very briefly on the difference be-
tween bitwise and logical.

With “logical” we regard the number as a whole.
The number is either true (non-zero) or false (zero).
With “bitwise” the number is regarded as a string of
bits. Two numbers become two strings of bits, and
the operator (and, or, xor) is applied to pairs of bits
in each number in order.

It is more clear in binary. If we say “5||3” we
mean “true or true.” If we say “5|3” we mean
“101|011” for which the answer is “111” (7). That
is, we combine the first bits (1 or 0), the second bits
(0 or 1), and the third bits (1 or 1) to get the answer.

5.6 Short Circuits

In the case of “logical and” and “logical or” there is a
shortcut we can frequently take to reach an answer.
This shortcut is called a “short circuit.”

To better explain this, consider the following
mathematical calculation:

13534582934581254× 0

Can you determine the answer? Can you do so
without the aid of a calculator?

We know that when any number is multiplied by
zero, the answer is zero. This is a shortcut we can
use to determine the result. We may even be able to
determine the answer to a calculation before all the
parts are known. For example, if I say: 0× 1353 . . .
you can tell me the result before I provide the rest of
that big and ugly number. You would have “short
circuited” the calculation.

When we use “and” to combine two numbers, if
the first number is zero, we know the answer will be
false (zero).

When we use “or” to combine two numbers, if the
first number is non-zero, we know the answer will be
true (one).

In both of these cases, we do not even bother to
calculate the rest of the formula. By the rules of
computing, we are actually forbidden to calculate
the rest of the formula. We must stop when we know
the answer.

When does this matter? Here is an example.
“5/0” is error because dividing by zero is illegal.
“5%0” is error because dividing by zero is illegal.
“5%0 || 7” is error because dividing by zero is

illegal.
“7 || 5%0” is 1. The divide by zero never hap-

pens because short-circuiting tells us the answer:
true or anything is true.

“5/0 && 0” is error because dividing by zero is
illegal.

“0 && 5/0” is 0. The divide by zero never hap-
pens because short-circuiting tells us the answer:
false and anything is false.

There is no short-circuit for “exclusive or.”

5.7 Beware Language Differences

C and Perl behave slightly differently. In C, 5||3
is true, represented by 1. In Perl the answer is also
true, but it is represented by 5, the number at which
short circuit took over. Language designers tend to
agree on basic principles but vary on some details.
When programming in a new language it is smart to
verify that things work as expected before writing
much code.

