
Perl Debugging

Professor Don Colton

Brigham Young University Hawaii

1 Introduction

Your Perl program looks right to you, but it does
not work. What you (are supposed to) do next is
called “debugging.” Where do you start in finding
the problem and correcting it?

For our examples, we will assume you have written
a program called myprog.

2 Two Kinds of Errors

There are two major kinds of errors: syntax errors
and run-time errors.

2.1 Syntax Errors

Syntax errors are flaws in the wording of your pro-
gram. They include such things as forgetting to end
a statement with a semi-colon, or spelling “print”
with a capital P as in “Print”. Generally computers
are very stupid about figuring out what you mean.
They are very good at doing what you say if it is
within their power, but you must say it exactly the
right way. If you say it wrong, the program will not
be able to run.

Syntax errors are caught by the compiler or inter-
preter, usually before the program even starts to run.
They are reported by identifying the line at which
the compiler decided that it was hopelessly confused.
The actual error is usually just before that point,
but it could be many lines earlier if the mistake is a
missing quote mark, for instance.

Many compilers will try to report as many syntax er-
rors as they can find. This is a throw-back behavior
more suited to an earlier time in the history of com-
puting, when programs were submitted through a

real window on a deck of punched cards and outputs
were retrieved four hours later. It was desirable to
see as many errors as possible all at once. But those
days are gone for most of us.

Focus your attention on only the first error. Later
errors could well be part of a domino effect much
like taking the wrong turn with driving directions.
Once you are off course, the other errors may simply
reflect the fact that you are already off course, and
may not be actual errors themselves. Focus your
attention on only the first error (or other things you
know are errors). Fix it and then try running your
program again.

2.2 Run-Time Errors

Run-time errors, sometimes called semantic errors,
are flaws in the logic of your program. They include
things like forgetting to initialize a variable before
adding to it, or doing things in the wrong order.
The resulting program will still run, but will do the
wrong thing.

Run-time errors cannot be reliably caught by the
compiler. Probably the best and easiest way of fig-
uring them out is by lacing your program with print
statements to dump the values of various variables
to show you how the program is acting. This effect
can also be achieved by using a good debugger us-
ing features like single-step and breakpoint. Most
languages have debuggers available. Learning to use
a debugger can take time and effort. It is usually
easier to rely on print statements and to graduate
to debuggers after you have developed some skill.

Sometimes it is good to put assert statements into
your program. In Perl, these are if statements that
check for things you are sure must be true, and if
they are not true, you want your program to stop so
you can fix the error. For example:

1

Web Programming Perl Debugging

if ($a > 1) { print "problem with $a"; die }

3 Run Your Program

The first step in debugging is to try running your
program. In fact, before you try running your pro-
gram you may not know whether there is a bug or
not. It is usually safe to assume there is at least one
bug.

3.1 Microsoft Windows

Normally with Microsoft Windows, Perl programs
are identified by having a filename extension of .pl
(or sometimes .perl). Make sure your program ends
with .pl. In our case, your program name should
be myprog.pl.

When your program name ends with .pl, does the
icon turn into a cute little gecko? If so, you probably
have ActiveState Perl installed and you should be
able to run your program. If not, you may need to
install Perl before you can run any Perl programs.

To run your program in the Graphical User Inter-
face (GUI) environment, double-click on your pro-
grams desktop icon and it should run. A text win-
dow should open up, and the inputs and outputs of
your program should appear there.

If the text window opens up and then closes imme-
diately, it means one of two things. Maybe your
program failed to start due to a syntax error. Or
maybe your program started and ran to completion,
and then the window closed.

To keep the window open, add an input line to your
program. Something like this may do the trick:

$wait = <STDIN>;

This will cause your program to wait for input. The
variable name $wait is not special. That name was
chosen to reflect its intended use. You could just as
well use $x.

After adding a wait line, run your program again.
If the window still opens and abruptly closes, you
probably have a syntax error. You will have to run
your program from the command line to see the error
messages.

Windows CMD

To run from the Windows command line, do some-
thing like start / run / cmd. It should open up a
command-line window.

In the command-line window, type cd followed by
the directory name of the folder where your program
is located. The cd by itself will ask Windows to
tell you in which directory you are currently located.
You may be able to get to your desktop by typing

cd Desktop

although this may be different on your system. Try
it. If it fails, you can also use the

dir

command to look for likely alternatives.

Once you find your way to the directory where your
program is stored you can run it by typing its name.
At this point it should attempt to run and should
report to you all the syntax error messages that are
preventing it from actually starting.

3.2 Linux

First make sure you have Perl installed. It is almost
100% guaranteed to be there, but just to be sure you
can type the which command:

which perl

This should report back to you something like
/usr/bin/perl or /usr/local/bin/perl. What-
ever it reports should be typed into the shebang line
of your script. If nothing is reported, Linux cannot
find Perl on your machine and you need to install it
or get help.

Second, run your program explicitly using Perl.

perl myprog

Your program should run, or you should see some
syntax errors. Fix them.

Bro Colton Page 2 January 30, 2008

Web Programming Perl Debugging

Shebang

The next step is to make your program run Perl
implicitly.

With Linux, scripts including Perl programs are
identified by having a shebang line as the first line of
the script. For Perl it should look like one of these
(matching whatever the which command returned):

#! /usr/bin/perl

#! /usr/local/bin/perl

Make sure this is the first line of your program.
Blank lines or blank spaces are not allowed before
the #! which must be the absolute first thing in your
program file.

Set the permissions on your program to make it exe-
cutible instead of merely readable and writable. You
can do that by typing the following command or
something similar:

chmod 700 myprog

Then you can run your program by typing this:

./myprog

If you set your path to include the current directory,
you can run your program by just typing this:

myprog

Several things can go wrong in this process. Here
are some common error messages and what you can
do to fix them.

./myprog: permission denied

This means that your permissions are not set prop-
erly. Run the chmod command to fix the permissions.

./myprog: line 4: whatever: command not found

This can mean that your program is not being un-
derstood as a Perl program, but instead is being run
as a normal /bin/sh shell program. Check your file
to make sure the #! line is absolutely first.

./myprog: command not found

This can mean several things. Maybe your program
is not present in the directory where you are running.
Type this command to make sure:

ls -l myprog

The ls command lists the directory contents. You
should see myprog listed. If not, you are in the wrong
directory or your program is in the wrong directory.
Fix that and try again. If you do see your pro-
gram then it may mean the Perl interpreter was the
command that was not found. Carefully check the
spelling on your #! line. Make sure you put /usr/
instead of /user/ and perl instead of pearl. (Yes,
these are common mistakes.)

If the program you are running was originally writ-
ten on an MS Windows system, perhaps using
Notepad, it may have transferred across with car-
riage returns between the lines. Under Linux and
Unix, lines are normally separated by \n whereas
with MS Windows, MS-DOS, and CP/M, lines are
normally separated by \r\n. The \r represents a
carriage return (CR). The \n represents a line feed
(LF). Sometimes this is called the CRLF problem.

You can fix the CRLF problem in at least two ways.
One way is to remove the CRs from your program.
This is great if you know how to do it, but it is
difficult to explain clearly The other way is to fix
your #! line so the \r is not seen as part of the Perl
command name. Add -- to make your line look like
this:

#! /usr/bin/perl --

Bro Colton Page 3 January 30, 2008

