
Using CGI on the Web

Professor Don Colton, BYU Hawaii

May 14, 2004

In this section of the course, we learn to use CGI
and Perl to create web pages with dynamic content
(content that differs from time to time, or from user
to user). This handout gives enough details to get
you started. It does not cover many of the finer
details that you can learn from other sources. It
simplifies a great deal in some cases. The intent is
to get you started. Once you are able to do a little,
we will guide you to do more.

For convenience I will assume your login name is
aa999. Naturally if your login name is different, you
should use it in place of aa999 in the instructions
below.

1 Directories and Permissions

To set up your directories and permissions properly,
type the following commands.

mkdir ~/public_html
mkdir ~/public_cgi
chmod 711 ~/. ~/public_html ~/public_cgi

The mkdir command will fail if the directory already
exists. Don’t worry about that.

On the first line, we create a ~/public_html direc-
tory (folder) for your normal web pages. The name
~/public_html is specified in the configuration file
that the web server is using. It is the default for
apache. When you have your own server you can
change the configuration file to specify a different
directory if you like.

On the second line, we create a ~/public_cgi di-
rectory (folder) for your CGI programs. The name
~/public_cgi is also specified in the configuration
file that the web server is using. It is not the default.
We invented it. When you have your own server you

can change the configuration file to specify a differ-
ent directory if you like.

chmod

The third line looks very cryptic. In it we set
the access permissions for dot (the current direc-
tory, which is your home directory) to drwx--x--x.
We also set the permissions for ~/public_html and
~/public_cgi the same.

The rwx means the owner (you) can (r)ead, (w)rite,
and e(x)ecute files in those directories. The first --x
means everybody else in your workgroup can only
execute. The second --x means every other user
on your computer (but not in your workgroup) can
only execute. The web server itself is a user on your
computer, but probably not in your workgroup.

This permission setting is needed to allow the web
server to use your files. Notice that 711 converted to
three-bit (octal) binary is 111 001 001. Do you see
the similarity between 111001001 and rwx--x--x?

A standard feature of the unix file system is that a
single dot refers to the “current” directory. Two dots
refers to the “parent” directory. In this case, dot
would mean your home directory (where you start
when you log in).

2 Simple Web Pages (No CGI)

The most simple web page has no formatting at all.
Just type some words into a file using your favorite
text editor. Save it. I will assume you called it
sample.txt. To enable access to the file, use chmod
to grant permission. Use the following commands:

emacs ~/public_html/sample.txt

1

Bro Colton CGI Tutorial May 14, 2004

(type a bunch of stuff, save, exit)
chmod 644 ~/public_html/sample.txt

Now start a browser and type in this url:

http://cs.byuh.edu/~aa999/sample.txt

It should display the contents of your file, just as
you typed it.

2.1 Common Errors

There are several common errors that first-time pro-
grammers tend to encounter. If your page is not
working, here are some things to check.

Forbidden: If you get a message like this, make
sure your file permissions and directory permissions
are set properly. Those are the chmod lines above.

Not Found: If you get a message like this, make
sure that your file is in your ~/public_html di-
rectory. Sometimes people will accidentally create
another ~/public_html directory inside their main
~/public_html directory. Use the pwd command
(print working directory) to find out where you are
editing and storing your file.

3 Web Pages With HTML

For our next step, we will create a web page that
includes “mark up” tags to specify formatting and
identify types of content. HTML stands for “hy-
per text markup language.” In this section we will
briefly identify the main markup elements you need
to know. Remember that we are (here) greatly sim-
plifying the world of HTML, and you can find more
powerful and complex markup commands discussed
elsewhere. Our purpose here is simply to get you
started.

<doctype is used to tell the browser what type of
document it is receiving, in what “language” it is
written. In the programming labs we give you a
standard doctype line to use. We will not explain it.
It should be the first line in your web page.

<html> starts your document. </html> ends your
document. Everything else goes between those tags.

<head> starts the heading portion of your docu-
ment. </head> ends the heading portion of your
document. The heading portion includes the title of
your web page, which should be between the <head>
and </head> tags.

<title> starts the title portion of your document.
</title> ends the title portion of your document.
Naturally the title goes between them.

<body> starts the content (body) portion of your
document. </body> ends the content (body) portion
of your document. All the content of your document
goes between those two tags.

<h1> and </h1> delimit a main heading in your doc-
ument. The words of the heading go between them.

<h2> and </h2> delimit a second-level main heading
in your document. The words of the heading go
between them.

<p> is used to end a paragraph.

 is used to break to a new line in the same para-
graph.

<hr> is used to draw a horizontal rule across the web
page.

That should get us started. Here is a sample web
page using html.

<html><head><title>Aloha</title>
</head><body>
<h1>Aloha from BYUH!</h1>
This is a short web page!<p>
Here is a line:<p>
<hr>
Here are two more lines:<p>
<hr><hr>
Well, that’s all folks!<p>
</body></html>

Build this page, save it, and set the permissions as
follows:

emacs ~/public_html/sample.html
(type in the lines above, save, exit)
chmod 644 ~/public_html/sample.html

2

Bro Colton CGI Tutorial May 14, 2004

Now start a browser and type in this url:

http://cs.byuh.edu/~aa999/sample.html

It should display the contents of your file, but instead
of <hr> you should see a horizontal rule (line).

4 A Simple CGI Program

Here is the exact same web page done up as a Perl
CGI program.

#!/usr/bin/perl -Tw
print "Content-type: text/html\n\n";
print "<html><head><title>Aloha</title>\n";
print "</head><body>\n";
print "<h1>Aloha from BYUH!</h1>\n";
print "This is a short web page!<p>\n";
print "Here is a line:<p>\n";
print "<hr>\n";
print "Here are two more lines:<p>\n";
print "<hr><hr>\n";
print "Well, that’s all folks!<p>\n";
print "</body></html>\n";

Basically every line of the web page is replaced by
a print statement. There is one major difference:
the first line printed says Content-type. Normally
when we display a web page, the server knows what
kind of page it is. Often this is based on the last
few letters of the file name, but this may vary from
server to server. A Macintosh server may behave
differently than a Linux server, which may behave
differently than a Microsoft server, etc.

The client (our web browser) does not know what
kind of server it is using, or what the file naming
rules are for that operating system. Normally the
server tells the “mime type” to the client. When
we run a CGI program to create a web page, the
server no longer knows what kind of page it is, so
our program must inform the client.

4.1 Testing Locally

To run this program, we must type it in and give it
a name. Let’s say we called it sample.

Note: on some servers, you must give your program
a name that ends with either .cgi or .pl because
those are the two file extensions that your server will
recognize as CGI programs. This varies by server.
You can control it from the configuration file.

emacs ~/public_cgi/sample
(type in the program just above)
chmod 711 ~/public_cgi/sample

Next we set the file access permissions to 711 making
the file executible by the server. All CGI programs
should have permissions of 711, whether they are
written in perl or C or some other language.

On some operating systems, you may need to set
the file access permissions to 755 making the file
both readable and executible by the server. In such
cases, since perl is a scripting language, the server
must be able to both read and execute our program.
With a compiled C program, the server only needs
to execute the program.

The main thing to notice is that you have a couple
of possibilities. Try one. If it does not work, try the
other.

We can test our program by running it directly where
it is.

~/public_cgi/sample

When you type in the command to run your pro-
gram, you should see the following output on your
screen:

Content-type: text/html

<html><head><title>Aloha!</title>
</head><body>
<h1>Aloha from BYUH!</h1>
This is a short web page!<p>
Here is a line:<p>
<hr>
Here are two more lines:<p>
<hr><hr>
Well, that’s all folks!<p>
</body></html>

3

Bro Colton CGI Tutorial May 14, 2004

4.2 Testing On The Web

When it runs properly (like this), we can move to
the next step and run it from the browser. Type in
this URL:

http://cgi.cs.byuh.edu/~aa999/sample

Notice that we are using cgi.cs.byuh.edu instead
of cs.byuh.edu.

This should run your CGI program, giving you the
same results as for sample.html.

4.3 Why CGI?

You may be asking why we would do CGI when we
can do html and be satisfied. The answer is that we
can create a customized web page, possibly differ-
ent for every person that views the page. We can
display information about their bank account bal-
ances, or information about the books they ordered.
Programming gives us the chance to have dynamic
content that can look different to everyone. Without
programs we are restricted to static content, which
looks the same to everyone.

5 Web Forms

Web forms provide the input to CGI programs.
They consist of blanks into which the user can type
information, and buttons or boxes of several types
that can be checked or pressed. A web page can have
any number of forms.

5.1 <form>

Each form starts with a <form> command and ends
with a </form> command. Forms cannot be nested
within one another. Here is a sample <form> com-
mand:

<form method=post action="bar.cgi">

5.2 <input>

Within the form, the most important item is the
<input ...> item. These create the data entry ar-
eas, the check boxes, and the buttons that can be
pressed to communicate with your CGI program.

<input type=button name=x value="y">
<input type=checkbox name=x value="y">
<input type=file name=x value="y">
<input type=hidden name=x value="y">
<input type=image name=x value="y">
<input type=password name=x value="y">
<input type=radio name=x value="y">
<input type=reset name=x value="y">
<input type=submit name=x value="y">
<input type=text name=x value="y" size=20>

There are many resources on the web to show you
examples of the <input> command. Each input will
have a name and a value. The name and value are
sent to your CGI program.

5.3 Example

In this example, there is a form with three visible
inputs: nuts, bolts, and enter. When the user keys
in values for nuts and bolts, and presses the enter
button, a string of information is sent to the CGI
program.

<form method=post action="bar.cgi">
<input type=hidden name=f value=1>
<input type=text
name=nuts value="" size=20>
<input type=text
name=bolts value="" size=20>

<input type=submit name=done value="enter">
</form>

If the user keys in the values 19 for nuts and 27
for bolts, and clicks on the enter button, the CGI
program will receive a single line of standard input
with exactly the following content:

f=1&nuts=19&bolts=27&done=enter

A regular expression can be used to recognize this
line and extract the data from it. This will result in

4

Bro Colton CGI Tutorial May 14, 2004

the value 19 being placed into the variable nuts and
the value 27 being placed into the variable bolts.

chomp ($line = <STDIN>);
$line=~/nuts=(\d+)&bolts=(\d+)&done=enter/;
$nuts = $1;
$bolts = $2;

An if statement can be used to identify and respond
to any of several forms.

chomp ($line = <STDIN>);
if ($line eq "") { &sub1 }
if ($line =~ /^f=1&/) { &sub2 }
if ($line =~ /logout=/) { &sub3 }

6 Tables

When you want to align the elements of your web
page into neat columns, it is handy to use a table.
You can start a table using a <table> command,
and end it using a </table> command. Within the
table, there are rows, each of which starts with a
<tr> (table row) command. It is not necessary to
use a </tr> at the end of the row. Within the row
are data items. Each is introduced by a <td> (table
data) command. It is not necessary to use a </td>
at the end of the data item. Here is a sample table.

<table>
<tr>
<td>upper left
<td>upper right

<tr>
<td>lower left
<td>lower right

</table>

You can nest tables inside one another.

7 Programming Hints

Now you know how to use the components that make
up a CGI program. Let’s take it from the other side,
top down. How do we design a CGI program?

7.1 Interactive versus Non

This may come as a complete surprise, but it is
a foundation of the way that CGI programs work.
Your CGI program is non-interactive. By interac-
tive, we mean that your program can ask questions
and get answers in some sort of conversation with
the user. Typically an interactive program has a
sequence of steps like this:

print "Hardware Store\n";
print "Enter the number of nuts: ";
$nuts = <STDIN>;
print "Enter the number of bolts: ";
$bolts = <STDIN>;
print "Enter the number of clips: ";
$clips = <STDIN>;
$total = $nuts + $bolts + $clips
print "You entered $total things.\n";
exit;

In an interactive program, you ask a question, get
an answer, ask another question, get another answer,
and so on.

7.2 Interactive is Good

It is nice to have a conversation between the user
and the machine. The path is chosen as a result
of intermediate results with many opportunities for
adjustment as time goes by.

We can compare a bird to an arrow. When a bird
flies, it can constantly adjust its course depending
on its surroundings. Maybe it sees a tasty insect,
so it swoops toward it and has a snack. Maybe it
goes around a branch, or alights on a wire. All these
decisions can be made “on the fly.”

An arrow also flies, but it makes no decisions. Once
it has left the bow, it flies straight, influenced by
the wind, gravity, and the direction and velocity it
started with. No more decisions occur. Eventually
the arrow hits something and stops. If the original
direction and velocity are carefully chosen (or lucky)
the arrow may hit the center of the target.

Compare an arrow being directed to the center of
a target, and a bird to finding its way home to its
nest. Which is easier? Which is more reliable? Mid-
course corrections make the flight interactive. This

5

Bro Colton CGI Tutorial May 14, 2004

is a good thing because it makes life much easier and
results more reliable.

7.3 Interactive is Missing

Mid-course corrections are exactly what we do not
have when working with CGI.

CGI is non-interactive. You do not ask any ques-
tions. At least not in the sense shown above. In-
stead you get one line of input when your program
starts. After that you create whatever output you
deem necessary. Then your program ends. No more
input. One line. At the start. That’s it.

This non-interactive business is pretty harsh.

But we can fake it.

7.4 The Chess Prodigy

You may have seen or heard about a person that can
play chess with dozens of people at the same time.
Imagine this scene. The chess prodigy is some young
boy or girl with an amazing gift for playing the game.
Around the room there are dozens of tables arranged
in a large circle. Inside the circle stands the chess
prodigy. On each table is a chess board, and behind
each table is an opponent. The boards are set. The
matches begin.

Each opponent makes an opening move. The young
chess prodigy walks quickly from table to table
around the circle making his reply. By the time
he returns to the first player, it is time for his sec-
ond move. He continues around the circle, playing
dozens of games at once and winning most or all of
them.

Question: must the prodigy actually remember any
of the games that he plays, or can he simply make
the best move in the context of the chess board he
can see?

7.5 Simulating a Conversation

We can fake a conversation by making sure we get
enough context in each input. The context will help
us remember what we still need to do to arrive at

our eventual goal.

At the top of your CGI program, you read one line
of input. Inspect that line to see what it says. Based
on that result, you can take a different path within
your program. Look at this simplified CGI version
of the interactive dialog above.

$reply = <STDIN>;
if ($reply eq "") {
print "Hardware Store\n";
print "Enter the number of nuts: ";
exit }

if ($reply =~ /nuts=(\d*)/) { $nuts = $1;
print "Enter the number of bolts: ";
exit }

if ($reply =~ /bolts=(\d*)/) { $bolts = $1;
print "Enter the number of clips: ";
exit }

if ($reply =~ /clips=(\d*)/) { $clips = $1;
$total = $nuts + $bolts + $clips
print "You entered $total things.\n";
exit }

Instead of just receiving the number of nuts, we re-
ceive nuts=23, indicating both the number of nuts
and the fact that it is nuts we are talking about. We
record the result and ask the next question. Then
our program ends.

The trick here is that like the chess prodigy, our
program does not need to remember what steps it
has completed. The incoming information provides
that clue. Based on the incoming information we
know what to do next.

7.6 Correcting the Lies

Every simplified thing is, to some extent, a lie. It
does not tell the truth, the whole truth, and nothing
but the truth. Instead, it tells the partial truth. It
leaves out the whole truth. We simplify for educa-
tional purposes. Later we add the missing details.

We crafted our simulated conversation to illustrate
an interactive appearance even when the underlying
program was non-interactive. We said that context
would help us do the right thing next. It does.

We skimped a bit on the details. There are two
major issues that we did not address. First, do we

6

Bro Colton CGI Tutorial May 14, 2004

have to make the user type nuts=5 instead of sim-
ply typing 5? Second (and more tricky), how does
our program remember the value for nuts and bolts
when it comes time to print the total? Isn’t that
information lost between separate runnings of the
program? We will handle each of this problems in
the following sections.

7.7 Providing Context

The nuts= context problem is easiest to solve, so we
will handle it first. Recall this program fragment.

$reply = <STDIN>;
if ($reply eq "") {
print "Hardware Store\n";
print "Enter the number of nuts: ";
exit }

We must improve the program fragment by provid-
ing a bit more information.

$reply = <STDIN>;
if ($reply eq "") {
print "Content-type: text/html\n\n";
print "<html><head>";
print "<title>Hardware Store</title>\n";
print "</head><body>";
print "<h1>Hardware Store</h1>\n";
print "<form method=post>\n";
print "Enter the number of nuts: ";
print "<input type=text size=20";
print " name=nuts value=\"\">";
print "</form></body></html>\n";
exit }

The input line specifies the name (nuts) and pro-
vides space (size=20) for the answer to be keyed in
by the user. Because our form does not specify a dif-
ferent action (a program to be run), our program
will be run again once the user types in a value and
presses enter.

7.8 Carrying Forward Information

The second issue was how our program can remem-
ber the value for nuts and bolts when it comes time

to print the total. In fact all information is lost be-
tween separate runnings of the program. The best
way is often provided by the use of hidden fields.

A hidden field is a special input field that actually
has no input. It has a name and a value, but there
is no way for the user to change it, or even see it
(except by viewing the page source).

Here is an example for the nuts, bolts, and clips task:

...
print "<form method=post>\n";
print "<input type=text size=20";
print " name=bolts value=\"\">";
print "<input type=hidden";
print " name=nuts value=$nuts>";
print "</form>\n";
...

This technique lets us carry forward information
from step to step. It does create one small prob-
lem in this case, though. We end up with the input
line for bolts looking like this:

bolts=7&nuts=5

Without any other changes to our program, it will be
recognized by the /nuts=/ test, and we will repeat
the bolts question. Here is another small change that
could help out:

if ($reply =~ /q=1/) {
$reply =~ /nuts=(\d*); $nuts = $1;
...
print "<input type=hidden";
print " name=q value=2>";
print "<input type=hidden";
print " name=nuts value=$nuts>";
print "<input type=text size=20";
print " name=bolts value=\"\">";
print "</form>\n";
...

In this case, we are using a hidden field q that tells
us which question we are asking. q=1 appears in the
nuts question, q=2 appears in the bolts question, and
so on.

7

Bro Colton CGI Tutorial May 14, 2004

7.9 Defeating Hackers

A clever programmer will notice immediately that
the data passed in hidden fields can actually be mod-
ified (with some difficulty) and returned to your pro-
gram with different values. For example, if the user’s
credit limit was passed along from screen to screen,
the user could actually hack the web page to change
his credit limit and your CGI program would believe
it.

In a case like this, it is a good idea to make up
a random-looking, unpredictable key and use it to
store the sensitive data in a database. Then pass the
key in a hidden field. When the key comes back, look
in the database for everything else. This prevents
the hacker from changing his credit limit because it is
not directly available. The key itself is hack-resistant
because a modified key is not likely to match the
database. This prevents the hacker from accessing
someone else’s data.

This technique has some side benefits as well. It can
be used to carry forward a large amount of informa-
tion without transmitting it back and forth. Also it
can be used to avoid transmitting information that
may be sensitive, such as ID numbers and passwords.

One could create a random-looking key by using the
rand() function in Perl, and then verifying that the
key is not already in use before using it.

8 Summary

CGI programming is fun and interesting. It gives
us the ability to let others run our programs from
anywhere in the Internet. It lets us carry out eCom-
merce. We have reviewed HTML, including forms
and tables. We have learned how to structure a
non-interactive CGI program so that it simulates a
conversation, working in multiple steps. We have
learned how to maintain data from one screen to
another. We have looked at an important way to
prevent hackers from misleading our programs.

We have scratched the surface pretty deeply, but
there are still other features of CGI that we have
not even begun to address, such as Cookies and SSL
(secure sockets layer). But this should be enough to
give you a good start.

Appendix

Validator

The w3.org consortium provides a free web page
validation service. Go to their web site at

http://validator.w3.org

and type in the URI of your web page. It will tell
you if your page has the correct syntax or not, and
how to fix it.

8

