
Using a MySQL Database

Professor Don Colton, BYU Hawaii

March 19, 2003

In this course, we will learn to use an SQL database
system called MySQL. The programming interface we
will learn also applies to other database engines, such
as Oracle. We are using MySQL because it runs fast
and is essentially free, so you can run it on your own
machine at home if you desire.

1 Working by Hand

There are two main ways to work with a database.
First, we will show how to work with it by hand. Sec-
ond, we will show how to work with it from another pro-
gram. In the long run, you will do most of your database
work using another program that you will write, such as
a CGI program. When you are debugging, or when you
are doing one-time kinds of things like creating tables,
working by hand can be a good solution.

1.1 Connect to MySQL

Use this command (from stu.cs.byuh.edu) to connect to
MySQL.

mysql -p -h HHH -u UUU

Replace HHH with the host name. Replace UUU with your
own username. When you are prompted for a password,
type it in. Your instructor should tell you your host-
name, username, and password. You will change your
password later.

The -p tells mysql to prompt you for a password.

The -h tells mysql to what hostname to connect to.

The -u tells mysql what username to use.

1.2 A Few Alerts

Pay attention to capital and lower-case letters. On some
platforms big and little letters are interchangable, so
“DonC” and “donc” are treated the same. This is called
“case insensitive.” On other platforms the big and little

letters are distinguished, so “DonC” and “donc” are
different. This is called “case sensitive.” Be aware of
the difference.

The up-arrow is your friend. Press it several times.
Press the down-arrow several times. Try the other ar-
row keys (left and right). When you have a line looking
the way you want it, you can press ENTER from any-
place in the line. You do not need to be at the end of
the line. Using these keys will speed up your work.

1.3 Change Your Password

The following command allows you to change your pass-
word to something you like better. The quotes, equal
sign, parentheses, and semi-colon are all required as
shown.

set password = password("whatever");

Change your password. Type exit to quit. Then log
back in using the new password.

Avoid using any of your existing passwords. That is
because this password is going to end up in your pro-
grams, right in plain text. People may see it, so you
may want to make it hard to remember. I recommend
you invent something totally random, like “vlksH36E.”
Nobody will guess that. Nobody will remember that.
And you will hardly ever need to type it in.

Certain characters can cause difficulty in a password (or
a table name, for that matter). Characters to avoid in-
clude space, backslash (\), at (@), dollar ($), and quote
("). There may be others. These characters are “meta-
characters” or “escape characters” which means that
they have a special meaning. They escape from the
normal meaning. For instance, when we print “\n” we
do not expect to get a backslash and an n. We expect
to get a newline. The backslash is special. Now that
you have been warned, I will admit that you can use
these special characters, but it requires extra care. For
most people it is easier to avoid them.

1.4 What Databases Exist?

See what databases exist on this “host.” Use the fol-
lowing command:

show databases;

It should give you a list of the databases that currently
exist. Your instructor will tell you which one is assigned
to you.

1.5 Creating a Database

You will probably not do this, but later you may want to
set up your own server and databases. Here are the com-
mands to create a database and to grant access rights
to a user.

create database DDD;
grant all on DDD.* to UUU
identified by "PPP";

In this example, DDD is the name of the database. UUU is
the username. PPP is the password. Apparently a user
can only have one password, so if you issue the com-
mand again with a different password, the first pass-
word is replaced.

1.6 Focus on Your Database

When you arrive in mysql, the instructor will have al-
ready granted you all rights within your own database.
Tell mysql to focus on your database by typing the fol-
lowing command:

use DDD

where “DDD” is replaced by the name of the database
assigned to you. mysql should then respond with
“Database changed.” Notice that in most commands,
a semi-colon (“;”) is required after the command. On
this command the semi-colon seems to be optional.

1.7 Databases Contain Tables

You will be working with tables within your database.
You can see a list of the existing tables by using this
command:

show tables;

Initially there should be nothing there. You should see
a message saying something like “Empty set.”

1.8 Create a Table

Create a table by doing something like this:

create table scores (
student varchar(50),
score int(6)
);

In this example, scores is the name of the table. It
has two columns. One is called student and can hold
a string of up to 50 characters. The second is called
score and can hold a number up to nine digits, with a
default printing width of six digits.

You can put that command all on one line if you like,
or spread it out over multiple lines like shown above.
mysql will continue prompting you for the remainder of
your command until you put in the semi-colon “;” to
tell it that you are done.

Now show tables again. You should see your new table.

1.9 Enter Data into Your Table

Insert something into your table by using commands
like these.

insert into scores values ("Fred", 100);
insert scores values ("Bob", 70);
insert into scores (score, student)
values (95, "Anne");

insert scores set student=Don, score=75;

1.10 Display the Data in Your Table

See what you have in your table by using a command
like this:

select * from scores;

1.11 Think Beyond the Example

Invent your own table with three or more columns. In-
sert into it three or more rows. Be creative. When you
have your table built and populated, do a “select *” on
the table and show your instructor. (Table names and
column names do not allow spaces.)

2 Working by Program

The previous section told how to work with a database
by hand. In this section, we show how to work with
it from another program. We will illustrate using the
Perl DBI (data base interface). We will not show you
everything that is possible. Instead, we focus on a few
simple commands that will allow you to do some inter-
esting things.

2.1 Connect to MySQL

In your Perl program, you can use the following lines
to connect to and disconnect from a MySQL database.
You are telling the computer the same things you had
to specify by hand (in the section above) when you con-
nected to MySQL. The difference is that this protocol
is easier for programming, and the by-hand protocol is
easier for humans.

use DBI; # to include needed definitions
$db = "DDD";
$host = "HHH";
$username = "UUU";
$password = "PPP";
$x = DBI->connect("DBI:mysql:$db:$host",
$username, $password, {RaiseError=>1});

Of course, you should replace DDD, HHH, UUU, and PPP
with the correct information. DDD might be 201DonC.
HHH might be cgi.cs.byuh.edu. If your host is the
“localhost” you can leave that part off from the con-
nect statement. RaiseError is an example of informa-
tion you can send as part of the connect process. If the
connect fails, $x will be false. You can say if($x) to
test whether the connection worked.

After connecting, you can access any of the tables and
data in the database. When you are done, you should
disconnect as follows.

$x->disconnect(); # when you are done

2.2 Issue a Query

When you are connected to the database, you can issue
queries (inquiries, requests, commands). Data retrieval
is probably the most common activity. There is a four-
step process for retrieving data from a table. The first
two steps are prepare and execute.

$query = "select * from tablename";
$y = $x->prepare($query); # introduce task

if (!$y) { die "query failed\n" }
$y->execute(); # carry out the task

Replace tablename with the actual name of your table.
It is scores in the examples above.

2.3 Viewing Results

If your query creates results (like select does), then
after you have executed the query, the results are ready
for you to process. You can fetch the results one row at
a time. If there are many rows of output, you need to
do this in a loop so you can fetch each of them. Here
are two ways to get the data from each row. In the
first way, we retrieve all the columns for one row into
an array.

while (@z = $y->fetchrow_array()) {
print $z[1]; # print the second column
($xxx, $yyy, $zzz, $frog) = @z;
print $frog; # print the first column

}

Of course, the names $xxx, etc. can be whatever vari-
able names you wish to use. In the second way, we
retrieve all the columns into a hash. Columns are iden-
tified by their formal name within the table.

while ($z = $y->fetchrow_hashref()) {
print $z->{price}; # print price column

}

After processing the rows we want, we can end at any
time.

$y->finish(); # when done with this query

3 Display Your Data

Write a program that displays the rows from the table
you created earlier. Connect. Query. Display results.
Disconnect. Quit. At first, do not worry if your data
do not line up neatly. But do separate them by at least
a few spaces so they don’t run together.

To make your data line up in neat columns, you can use
the \t tab character (a quick and dirty solution), or you
can format the data to a specific width, using printf.
Here is an example.

$format = "student: %-20s score: %5.0f\n";
printf ($format, $student, $score);

4 Advanced Queries

Here is some additional information you may find useful.

4.1 Column Data Types Allowed

In our example above, we created a table with two
columns: student and score. Student was followed by
the note “varchar(50)” and score was followed by the
note “int(6)”. Varchar and int are called data types or
column types. Here is a more complete sample of the
column types allowed in mySQL. For a complete list,
consult the mySQL book.

tinyint -128 .. 127 (one byte)
smallint -32768 .. 32767 (two bytes)
mediumint -8388608 .. 8388607 (three bytes)
int 9 digits (four bytes)
bigint 20 digits (eight bytes)
float like C, four bytes
double like C, eight bytes
decimal(m,d) string, m+2 bytes
char(m) string, m bytes
varchar(m) string, 1 to m+1 bytes
tinytext up to 256 bytes
text up to 65536 bytes
date YYYY-MM-DD, three bytes
time hh:mm:ss, three bytes
datetime eight bytes
timestamp four bytes (auto updating)
year one byte

4.2 Updating a Row

You will need an update query. In this example,
mystuff is a table name, desc is the column to be
changed, yadda is a new value, and ID is the column
to be matched.

update inven set desc="yadda" where ID=37;
update inven set desc="yadda"
where ID=37 and price=33.91;

update inven set desc="yadda", price=99.99
where ID=19;

4.3 Deleting a Row

You will need a delete query. In this example,
inventory is a table name, ID is the column to be
matched, and 99 is a value. If you leave off the “where”
part, all rows in your table will be deleted.

delete from inventory where ID=99;

4.4 How to Add a Column

To modify an existing table, use the alter table
query. Here are some samples of things you can do:

alter table foo add price int after cost;
alter table bar change price float;
alter table bletch drop cost;

4.5 How to Delete a Table

To delete a table, use the drop table query.

drop table bletch;

4.6 Not Case Sensitive

MySQL is not case sensitive, so name your tables and
rows with that in mind. However, perl is case sensitive,
so within any programs you write be consistent in how
you capitalize things.

5 Doing More

If you wish to go beyond this short introduction to
database you may want to buy these books. (They are
in the bookstore under “IS 431.”)

• Recommended: MySQL, by: Paul DuBois. New
Riders press. ISBN 0-7357-0921-1. SRP $49.99.

• Alternate: Programming the Perl DBI, by: Al-
ligator Descartes and Tim Bunce. O’Reilly press.
ISBN 1-56592-699-4. SRP $34.95.

“MySQL” is more expensive, but really covers both
SQL and the Perl DBI well. I recommend it highly.

DB Lab Sign-off Sheet

Student Name:

This sheet is to be completed by a CS tutor. The tutor
should sign (or initial) and date each item when the
student has demonstrated its completion.

dbselect Lab

In this assignment, you will build one or more CGI pro-
grams to interact with the tables in your database. The
CGI must list all the tables in your database and allow
the user to select one of them. After selecting a ta-
ble, the CGI must, at a minimum, identify which table
was selected. For full credit, the CGI must also list all
rows and columns in that table. You are not required
to identify the column names.

For this assignment, you are not permitted to use CGI
in your program. You are also not permitted to encode
any table-specific information into your program. (This
is also known as “hard coding” your program for specific
database tables.)

Key queries you may need include “show tables” and
“select *”.

1. When the CGI program is run from the web, it should
show a list of all the tables the student has. Each table
should be selectable in some way.

Tutor: Date:

2. When a table is selected, a new screen should be
drawn with the name of that table shown in a special
way, and all rows of the selected table should be dis-
played neatly and clearly.

Tutor: Date:

3. Have the student create a new table (by hand) and
insert new rows into it while you watch. Tell the student
what to put into at least one of the new rows. Then have
the student run their CGI again. It should display the
new table and its rows. There should be no need for
the student to modify the CGI to make this work.

Tutor: Date:

For credit, the student should show this sign-off sheet
to their instructor.

dbupdate Lab

In this assignment, you will build a table of items for
sale. For each item in your inventory, the table must
include the following information: an id number, a de-
scription, a quantity on hand, the cost to you, and the
price to your customers. Put several items into your
table. This is the minimum. You are allowed to have
additional information in your table at your discretion.

You must also build one or more CGI programs to in-
teract with your table. The CGI must, at a minimum,
(1) display all rows of your table and give the total in-
ventory value (cost × quantity) for each row, and give
a grand total inventory value across all rows. For each
row, there must be (2) a way to modify the description,
quantity, cost, and price. There must also be (3) a way
to delete an item from the table. Having a quantity
of zero should not automatically cause deletion. There
must be (4) a way to add new rows to your table, either
one at a time or several at once.

1. Have the student operate their CGI to produce a
complete inventory list on the screen showing id num-
ber, item description, quantity on hand, cost, and price.
For each row, the total value of that row (quantity times
cost) must be shown. For the whole table, the grand to-
tal value for all rows must be shown.

Tutor: Date:

2. Have the student demonstrate the changing of values
in several rows. The student should let the tutor decide
what the new values will be. Verify the totals are still
correct.

Tutor: Date:

3. Have the student demonstrate the creation of several
new rows. Verify the totals are still correct.

Tutor: Date:

4. Have the student demonstrate the deletion of several
old rows. Verify the totals are still correct.

Tutor: Date:

For credit, the student should show this sign-off sheet
to their instructor.

