
CIS 101 Study Guide

Winter 2014

Don Colton
Brigham Young University–Hawai‘i

April 9, 2014

1

Study Guide

This is the official study guide for the CIS 101 class, Beginning Program-
ming, as taught by Don Colton, Winter 2014. It is focused directly on the
grading of the course.

http://byuh.doncolton.com/cis101/2141/sguide.pdf is the study guide,
which is this present document. It will be updated frequently through-
out the semester, as new assignments are made, and as due dates are
established, and as clarifications are developed.

Syllabus

http://byuh.doncolton.com/cis101/2141/syl.pdf is the official syllabus
for this course. It is largely reproduced in Chapter 1 (page 3) below.

Text Book

This study guide is a companion to the text book for the class, Introduction
to Programming Using Perl and CGI, Third Edition, by Don Colton.

The text book is available here, in PDF form, free.

http://ipup.doncolton.com/

The text book provides explanations and understanding about the content
of the course.

http://byuh.doncolton.com/cis101/2141/sguide.pdf
http://byuh.doncolton.com/cis101/2141/syl.pdf
http://ipup.doncolton.com/

Contents

1 Syllabus 3

2 Calendar 22

3 Problem Solving 24

4 DCQuiz: My Learning Management System 27

5 Activities General Information 33

6 GradeBot 40

7 Programming Style 45

8 Activities Assigned 51

9 Exam Questions 92

10 Final Projects 105

A Spelling 109

Index 111

2

Chapter 1

Syllabus

The original, separate syllabus is the official version. This is a copy of that
syllabus, and is provided for your convenience and as a place for me to
correct minor errors such as spelling mistakes.

Contents

1.1 Overview . 4

1.1.1 Preparation . 5

1.1.2 There May Be Changes 5

1.2 Course Details . 5

1.2.1 About the Course 5

1.2.2 About the Instructor 5

1.2.3 My Websites . 6

1.3 Learning Objectives 6

1.4 Communication 7

1.4.1 Me to You, Formal 7

1.4.2 Me to You, Informal 8

1.4.3 You to Me, Formal 8

1.4.4 You to Me, Informal 8

1.5 Grading . 9

1.5.1 Tracking Your Grade 10

1.5.2 Effort: (50 points) Daily Update 10

1.5.3 Effort: (250 points) Study Time 10

1.5.4 Effort Points are Optional 11

1.5.5 Activities: Daily (135 points) 11

3

CHAPTER 1. SYLLABUS 4

1.5.6 Activities: Project (40 points) 12

1.5.7 Skill: Exams (525 points) 13

1.5.8 Other Extra Credit 14

1.6 Calendar . 14

1.6.1 Special Dates . 15

1.6.2 Excused Absences 15

1.6.3 Reasonable Accommodation 15

1.7 Support . 16

1.7.1 Office Hour / Open Lab 16

1.7.2 Study Groups . 16

1.7.3 Tutoring . 17

1.8 BYUH Learning Framework 17

1.8.1 Prepare for CIS 101 18

1.8.2 Engage in CIS 101 18

1.8.3 Improve at CIS 101 18

1.9 Standard Statements 18

1.9.1 Academic Integrity 19

1.9.2 Dress and Grooming Standards 20

1.9.3 Accommodating Special Needs 21

1.9.4 Sexual Harassment 21

1.1 Overview

Computers are great. But they are also really stupid.

By stupid, I mean computers only understand really simple commands. Any-
thing complex must be built up out of these simple commands.

Programming is the art of building up the fun and interesting things that
you want to be done, starting from just the really simple commands that
the computer can understand.

Sometimes it is frustrating. Sometimes it is very satisfying.

This class teaches powerful knowledge. It teaches skills by which you can
better serve those around you. It teaches skills you can “take to the bank.”

There are many fine programming languages. Our programming language
will be Perl.

CHAPTER 1. SYLLABUS 5

1.1.1 Preparation

We assume you have no programming experience whatsoever. We expect
you can read, type, send and receive email, and visit web sites. We will
teach you everything else you need to know.

1.1.2 There May Be Changes

Like all courses I teach, I will be keeping an eye out for ways this one could
be improved. Changes generally take the form of opportunities for extra
credit, so nobody gets hurt and some people may be helped. If I make a
change to the course and it seems unfair to you, let me know and I will try
to correct it. If you are brave enough, you are welcome to suggest ways the
class could be improved.

I may digitally record the audio of my lectures some days. This is to help
me improve my teaching materials.

1.2 Course Details

1.2.1 About the Course

• Course Number: CIS 101
• Title: Beginning Programming
• Course Description: Extensive hands-on software development and

testing using variables, arrays, instruction sequences, decisions, loops,
and subroutines. May also include dynamic web pages (CGI) and
regular expressions.
• Textbook: Introduction to Programming Using Perl and CGI, by

Don Colton.
• Classroom: GCB 111
• Start/End: Mon, Jan 6 to Mon, Apr 7
• Class Time: MWF 11:00 to 12:00
• Final Exam: Wed, Apr 9, 10:00–12:50

1.2.2 About the Instructor

• Instructor (me): Don Colton
• My email: doncolton2@gmail.com

CHAPTER 1. SYLLABUS 6

• My Office: GCB 128
• Office Hour: MWF 12:10 to 13:10.

I have reserved GCB 111 on MWF 12:10 to 13:10 so my students (and
others) can study in a lab setting and meet with me and each other. I allow
the room as an Open Lab for your use either individually or in groups, for
my class or for other classes. MWF 12:10 to 13:10 I will be present in GCB
111 or in my office to assist students that come.

1.2.3 My Websites

Here is a list of my other websites that you may encounter this semester.

• http://byuh.doncolton.com/cis101/ is my course homepage. It
has links to everything else, including the study guide and the text-
book.
• http://ipup.doncolton.com/ has the textbook I wrote for this class.
• https://dcquiz.byuh.edu/ is the learning management system for

my courses.
• http://byuh.doncolton.com/ is my campus homepage. It has my

calendar and links to the homepages for each of my classes.
• http://doncolton.com/ is my off-campus homepage.

1.3 Learning Objectives

By the conclusion of this course, students will demonstrate the ability to
write clear and correct programs that utilize the following techniques.

• sequences of simple steps

• simple variables (scalars)

• decisions (if, else, elsif)

• looping (while, for, foreach)

• array and list variables

• subroutines

http://byuh.doncolton.com/cis101/
http://ipup.doncolton.com/
https://dcquiz.byuh.edu/
http://byuh.doncolton.com/
http://doncolton.com/

CHAPTER 1. SYLLABUS 7

Students will demonstrate these major skills by creating, in timed and su-
pervised situations, short programs that perform specific tasks.

In teaching the major skills, I also teach the following:

• dynamic web page creation

• dynamic response to web page inputs

1.4 Communication

We communicate with each other both formally and informally.

Formal communication tends to be written and precise. Formal is for any-
thing truly important, like grades. Formal is authoritative.

Informal communication tends to be more casual and impromptu. Informal
is meant to be helpful and efficient. Reminders are informal. Emails are
informal. Explanations are usually informal.

1.4.1 Me to You, Formal

I communicate formally, in writing, through (a) the syllabus, (b) the study
guide, and (c) the learning management system.

(a) Syllabus: http://byuh.doncolton.com/cis101/2141/syl.pdf is the
syllabus for this course. It tells our learning objectives and how you will be
graded overall. You can rely on the syllabus. After class begins, it is almost
never changed except to fix major errors.

(b) Study Guide: http://byuh.doncolton.com/cis101/2141/sguide.

pdf is the study guide for this course. It includes a copy of the syllabus. The
study guide is updated frequently throughout the semester, as assignments
are made and deadlines are established or updated.

(b1) Calendar: The study guide tells when things will happen. It contains
specific due dates.

(b2) Assignments: The study guide tells what assignments have been
made and how you will be graded, item by item. It provides current details
and specific helps for each assignment. It provides guidance for taking the
exams.

http://byuh.doncolton.com/cis101/2141/syl.pdf
http://byuh.doncolton.com/cis101/2141/sguide.pdf
http://byuh.doncolton.com/cis101/2141/sguide.pdf

CHAPTER 1. SYLLABUS 8

(c) DCQuiz: https://dcquiz.byuh.edu/ is my learning management sys-
tem. I use it to give tests. I use it to show you my grade books.

1.4.2 Me to You, Informal

My main informal channels to you are (a) word of mouth and (b) email.

(a) Word of Mouth, including Lecture: Class time is meant to be
informative and helpful. But if I say anything truly crucial, I will also put
it into the study guide.

(b) Email: My emails to you are meant to be helpful. But if I say anything
truly crucial, I will also put it into the study guide. Normally I put CIS 101
at the front of the subject line in each email I send.

1.4.3 You to Me, Formal

Your formal channels to me, specifically how you turn in class work, are
mainly via (a) the learning management system, (b) email, and (c) specifi-
cally requested projects.

(a) DCQuiz: To use my learning management system, you must log into
it. Then, you can respond to questions I have posted. Each day there will
be a “daily update”. I say more on that below. Exams will also be given
using DCQuiz.

(b) Email: You will use formal email messages to submit some of the
programs you write and to tell me certain other things. The study guide
tells how to send formal emails, including where to send them, what subject
line to use, and what to put in the body of the message.

(c) Student Projects: The study guide may tell you to submit certain
work in the form of a webpage or web-based program. If so, it will say
specifically where to put it. I will go to that spot to grade it.

1.4.4 You to Me, Informal

Your informal channels to me, typically how you ask questions and get
assistance, are mainly face to face and by email or chat.

Face to Face: If you need help with your class work, I am happy to look
at it and offer assistance. Often this happens during class or during office

https://dcquiz.byuh.edu/

CHAPTER 1. SYLLABUS 9

hours. Often I will have you put your work on your computer screen, and
then I will take a look at it while we talk face to face.

Email / Chat: You can also get assistance by sending me an email or
doing a chat. I will do my best to respond to it in a reasonable and helpful
way. If you want something formal, use the formal rules.

If you are writing about several different things you will usually get a faster
response if you break it up into several smaller emails instead of one big
email. I try to respond to a whole email at once, and not just part of it. I
usually answer smaller and simpler emails faster than big ones.

1.5 Grading

I use a 60/70/80/90 model based on 1000 points.

Based on 1000 points
930+ A 900+ A– 870+ B+

830+ B 800+ B– 770+ C+

730+ C 700+ C– 670+ D+

630+ D 600+ D– 0+ F

The points are divided up as follows.

Effort 300

Daily Update 50

Study Time 250

Achievement 700

Activities 135

Final Project 40

Exams 525

You need to earn a C or better (730 points or more) in the class if you plan
to major in CS, IS, or IT. If you earn less, you must retake the class or
change majors.

CHAPTER 1. SYLLABUS 10

1.5.1 Tracking Your Grade

I keep an online grade book so you can see how your points are coming along.
It also lets you compare them with other students in the class (without seeing
their names).

https://dcquiz.byuh.edu/ is my personal Learning Management System.
That is where I maintain my online grade book.

Your points are organized into three grade books: Overall, Effort, and Ac-
tivities.

2141 CIS 101 Overall Grade Book: The Overall includes the totals
from Activity and Effort and adds your exam performance. It also shows
your final grade.

2141 CIS 101 Effort Grade Book: The Effort tracks the daily updates
and study time.

2141 CIS 101 Activities Grade Book: The Activities tracks your per-
formance on in-class activities.

1.5.2 Effort: (50 points) Daily Update

Each day in class starts with the “daily update” (DU). It is my way of
reminding you of due dates and deadlines, sharing updates and news, and
taking roll. It is your way of saying something anonymously to each other
and to me. It must be taken in class during the 10-minute window of time
that starts 5 minutes before class and ends 5 minutes into class.

The DU is worth two points per class period, with 50 points expected (for
25 out of 37 class periods), and about 75 points possible. Anything beyond
50 is extra credit. It is also a reward for coming on time, or close enough
that you can do the update.

As part of the Daily Update, once a week I will ask you how much time
you spent studying the previous week. I will use your report to update your
study time points.

1.5.3 Effort: (250 points) Study Time

We award points for study time (ST), which is time spent engaging with
materials directly related to this course.

https://dcquiz.byuh.edu/

CHAPTER 1. SYLLABUS 11

Each week you are invited to report, on your honor, how many hours you
studied during the previous week, Sunday morning through Saturday night.
We award two “effort” points per hour of “study,” for a goal of 18 points
(9 hours, including class time) and a maximum of 20 points (10 hours) per
week, whether there is a holiday or not.

There are 14 weeks. 14 x 18 = 252. 14 x 20 = 280 (max). Anything beyond
250 points is extra credit.

Most students max out the study time points each week. This provides them
with extra credit that helps ensure they get a good grade in the class.

Carry Forward: If you study more than the maximum time for which I
will give credit, you are invited to report them, and also carry forward the
extra hours and report them in the next week. For example, since 10 hours
is the maximum that counts, if you studied 15 hours, you would report 15
hours of study, and I would count the first 10 hours. You would then take
the remaining 5 hours and count it toward the following week.

There is no Carry Backward.

1.5.4 Effort Points are Optional

The effort points (daily update and study time) are there as a safety net.
They are meant to be easy to earn. They help to make sure you will pass
the class.

But when I calculate your final grade, I do it several ways:

(a) Counting every point, based on 1000 total points.

(b) Counting all but daily update and study time, based on 700 total points.

I grade several ways because some students have previous experience (or
natural genius) and do not need to study as much.

I use whichever method gives you the best grade.

1.5.5 Activities: Daily (135 points)

On most days we will have an in-class activity assignment. Each will nor-
mally be worth 5 points.

Roughly 27 assignments x 5 points = 135 points. The total will be 135.

CHAPTER 1. SYLLABUS 12

Anything beyond that is extra credit.

The number of in-class activities is not perfectly predictable. The overall
points will be adjusted so the full-credit values add up to 135 or more.

Points are assigned on a 0-to-5 basis as follows:

0: nothing found, or way too little.

1: It’s a start. Runs without crashing.

3: Nice but missing something important.

4: Missing something minor.

5: Perfect. Totally meets the standards for achievement.

Bonus points may be given based on peer voting.

Some assignments may take two days and count double.

On activity work, you are encouraged to work with (but not just copy) your
fellow students. We want everyone to get full credit on every assignment.

Every assignment will have ample opportunities for individual creativity.
Duplicate work will break my heart.

1.5.6 Activities: Project (40 points)

(40) Project Points

10 Project CGI: write a dynamic web page

10 Project Pictures: use img tags

10 Project Multi Input: process multiple inputs

10 Project Hidden Fields: pass state (counter, etc)

The final project is due by 23:59 on Tuesday, the day after the last day of
class. I plan to grade it early on Wednesday unless you have asked me to
grade yours earlier.

Project points are earned for performance on out-of-class work. The project
must be your own work. It should be fun. A game would be ideal. You are
allowed to consult with others including websites but you are not allowed
to cut and paste code written by others. Each online screen must clearly
identify you as the author. It must accept user input. It should utilize
hidden fields (state) that are needed for its operation.

CHAPTER 1. SYLLABUS 13

Your final project cannot just be something we did in class. The
in-class activities are good examples, and teach good principles, but they
do not demonstrate understanding or creativity. If your project is based
on something we did in class, it must go beyond it in some substantial and
significant way.

http://dc.is2.byuh.edu/cis101.2141/ is the place to link your project.
It is the Student Projects page for this class. Link it to the “proj” slot.

See the study guide for a more detailed presentation of the official project
details.

1.5.7 Skill: Exams (525 points)

There are 21 exam tasks. Each is a program for you to do during one of
the final exams. Each is worth 25 points. Points for each question can be
earned only once.

There are several exams given during the semester. Each one is a “final
exam” in the sense that it covers everything we learn during the semester,
and by completing it, you earn the points for it as though you had done
it on the day of the actual final. Except for the last exam, they are called
“early final” exams. Each early final lasts for about one hour. The last final
lasts for about three hours. One practice exam is also given, for no credit,
to help you understand how to do the other tests.

(525) Exam Points (21 tasks)

1 25p String Basic (1B)

2 25p Number Basic (2B)

3 25p Number Story (2S)

4 25p Number Decision (4D)

5 25p Number Decision Story (4S)

6 25p String Decision (5D)

7 25p String Decision Bracket (5B)

8 25p Repeat While (6W)

9 25p Repeat For (6F)

10 25p Repeat Last (6L)

http://dc.is2.byuh.edu/cis101.2141/

CHAPTER 1. SYLLABUS 14

11 25p Repeat Nested Loops (6N)

12 25p Lists Basic (7B)

13 25p Lists Loop (7L)

14 25p Arrays Basic (8B)

15 25p Arrays Loop (8L)

16 25p Split (8S)

17 25p Join (8J)

18 25p Subroutine Returns (9R)

19 25p Subroutine Positional Parameters (9P)

20 25p Subroutine Globals and Locals (9G)

21 25p Subroutine Variable Parameters (9V)

The study guide talks more about each of these tasks.

1.5.8 Other Extra Credit

Report an error in my formal communications (the published materials I
provide), so I can fix it. In this class, the materials include the following:

• The course website, parts relating to this semester.

• The course syllabus.

• The course study guide.

• The course textbook, since I wrote it.

Each error reported can earn you extra credit. (Typos in my email messages
are common and do not count.)

Syllabus errors (unless they are major) will probably be fixed only in the
study guide. Check there before submitting it.

1.6 Calendar

We meet about 37 times plus the final.

CHAPTER 1. SYLLABUS 15

The due date and deadline for things will be published in the study guide and
mentioned in class. The study guide will be updated regularly throughout
the semester.

1.6.1 Special Dates

Mo Jan 06 First Day of Instruction
Fr Jan 17 exam 0 practice test

Mo Jan 20 No Class: Human Rights Day
Fr Jan 24 exam 1
Fr Feb 07 exam 2

Mo Feb 17 No Class: Presidents Day
Fr Feb 21 exam 3
Fr Mar 07 exam 4
Fr Mar 21 exam 5

We Mar 26 No Class: Kuhio Day
Fr Apr 04 exam 6

Mo Apr 07 Last Day of Instruction
Tu Apr 08 All Late-Work Deadline
We Apr 09 exam 7 Final Exam, 10:00–12:50

The exam dates will not change unless there is a fire or a flood or something.
Exams happen about twice a month. They are closed-book, closed-notes,
closed-neighbor, etc. You can bring blank paper. Some memorization is
required.

1.6.2 Excused Absences

There are many good reasons why students request special treatment. In-
stead of dealing with these as they arise, based on my years of experience, I
have adopted general policies that are intended to accommodate all but the
most difficult cases.

1.6.3 Reasonable Accommodation

This section covers special needs, including qualified special needs, as well
as all other requests for special treatment.

I have carefully designed each of my classes to provide reasonable accommo-
dation to those with special needs. Beyond that, further accommodation is

CHAPTER 1. SYLLABUS 16

usually considered to be unreasonable and only happens in extreme cases.
Please see the paragraph on “Accommodating Special Needs” below for more
information.

Ample Time: Specifically, I allow ample time on tests so that a well-
prepared student can typically finish each test in half of the time allowed.
This gives everyone essentially double the amount of time that should nor-
mally be needed.

Exam Retakes: I give the final exam seven times.

Deadlines: Most assignments are due soon after they are discussed, but I
normally allow late work at full credit for several more weeks (except at the
end of semester).

Even though I truly believe that these methods provide reasonable accom-
modation for almost everyone in almost every case, you might have a highly
unusual situation for which I can and should do even more. You are welcome
to see me about your situation.

1.7 Support

The major forms of support are (a) open lab, (b) study groups, and (c)
tutoring.

If you still need help, please find me, even outside my posted office hours.

1.7.1 Office Hour / Open Lab

I have reserved GCB 111 on MWF 12:10 to 13:10 so my students (and
others) can study in a lab setting and meet with me and each other. I allow
the room as an Open Lab for your use either individually or in groups, for
my class or for other classes. MWF 12:10 to 13:10 I will be present in GCB
111 or in my office to assist students that come.

1.7.2 Study Groups

You are encouraged to form a study group. If you are smart, being in a
study group will give you the opportunity to assist others. By assisting
others you will be exposed to ideas and approaches (and errors) that you

CHAPTER 1. SYLLABUS 17

might never have considered on your own. You will benefit.

If you are struggling, being in a study group will give you the opportunity to
ask questions from someone that remembers what it is like to be totally new
at this subject. They are more likely to understand your questions because
they sat through the same classes you did, took the same tests as you did,
and probably thought about the same questions that you did.

Most of us are smart some of the time, and struggling some of the time.
Study groups are good.

1.7.3 Tutoring

The CIS department provides tutoring in GCB 111, Monday through Friday,
typically starting around 17:00 and ending around 23:00 (but earlier on
Fridays). Normally a schedule is posted on one of the doors of GCB 111.

Tutors can be identified by the red vests they wear when they are on duty.

Not all of the tutors know about everything. But all of the tutors should
know which tutors do know about whatever you are asking about, so they
can direct you toward the best time to get your questions answered.

The best way to work with a tutor is to show them something that you have
written and ask them why it does not work the way you want. This can
open the door to a helpful conversation.

Another good way to work with a tutor is to show them something in the
textbook and ask about it.

The worst way to work with a tutor is to plunk down next to them and say,
“I don’t understand. Can you teach me?” If you did not try hard to read
carefully, you are wasting everybody’s time.

1.8 BYUH Learning Framework

I believe in the BYUH Framework for Learning. If we follow it, class will be
better for everyone.

CHAPTER 1. SYLLABUS 18

1.8.1 Prepare for CIS 101

Prepare: Before class, study the course material and develop a solid un-
derstanding of it. Try to construct an understanding of the big picture and
how each of the ideas and concepts relate to each other. Where appropriate
use study groups to improve your and others’ understanding of the material.

In CIS 101: Make reading part of your study. There is more than we could
cover in class because we all learn at different rates. Our in-class time is
better spent doing activities and answering your questions than listening to
a general lecture.

1.8.2 Engage in CIS 101

Engage: When attending class actively participate in discussions and ask
questions. Test your ideas out with others and be open to their ideas and
insights as well. As you leave class ask yourself, “Was class better because
I was there today?”

In CIS 101: Participate in the in-class activities. Those that finish first
are encouraged to help those that want assistance. It is amazing what you
can learn by trying to help someone else.

1.8.3 Improve at CIS 101

Improve: Reflect on learning experiences and allow them to shape you into
a more complete person: be willing to change your position or perspective
on a certain subject. Take new risks and seek further opportunities to learn.

In CIS 101: After each exam, I normally allow you to see every answer
submitted, every score given, and every comment I wrote, for every question.
Review your answers and those of other students. See how your answers
could be improved. If you feel lost, study the readings again or ask for help.

1.9 Standard Statements

All syllabi are encouraged or required to address certain topics. These are
generally considered to be common sense, but we find that it is useful to
mention them explicitly anyway.

CHAPTER 1. SYLLABUS 19

1.9.1 Academic Integrity

We learn by watching others and then doing something similar.

Sometimes it is said that plagiarism is copying from one person, and research
is “copying” from lots of people.

When you are having trouble with an assignment, I encourage you to look
at not just one, but many examples of work done by others. Study the
examples. See what you can learn from them. Do not automatically trust
that they are right. They may be wrong.

Do not simply copy. Do your own work. When I review computer code,
sometimes I see quirky ways of doing things. They appear to work even
though they may be wrong. And then I see someone else that has done it
exactly the same wrong way. This does not feel like “doing your own work.”
Cut and paste is pretty much an honor code violation. Read and learn is
totally okay. Copying other ideas is okay. I don’t want to see any cut and
paste.

http://en.wikipedia.org/wiki/Plagiarism has a wonderful article on
plagiarism. Read it if you are not familiar with the term. Essentially, pla-
giarism is when you present the intellectual work of other people as though
it were your own. This may happen by cut-and-paste from a website, or by
group work on homework. In some cases, plagiarism may also create a vio-
lation of copyright law. If you borrow wording from someone else, identify
the source.

Intentional plagiarism is a form of intellectual theft that violates widely rec-
ognized principles of academic integrity as well as the Honor Code. Such
plagiarism may subject the student to appropriate disciplinary action admin-
istered through the university Honor Code Office, in addition to academic
sanctions that may be applied by an instructor.

Inadvertent plagiarism, whereas not in violation of the Honor Code, is nev-
ertheless a form of intellectual carelessness that is unacceptable in the aca-
demic community. Plagiarism of any kind is completely contrary to the
established practices of higher education, where all members of the univer-
sity are expected to acknowledge the original intellectual work of others that
is included in one’s own work.

CIS 101: In this course group work is permitted and encouraged
but you are not allowed to turn in work that is beyond your un-
derstanding, whether you give proper attribution or not. Make

http://en.wikipedia.org/wiki/Plagiarism

CHAPTER 1. SYLLABUS 20

sure you understand what you are submitting and why each line
is there.

You must write your own programs. You can look at what other people
have done, and you can show other people what you have done, but you are
forbidden to copy it. Look at it, yes. Understand it, yes. Ask about it, yes.
Explain it, yes. Copy it, no.

CIS 101: On exams you are required to work from personal mem-
ory, using only the resources that are normally present on your
computer. This means the exams are closed book and closed notes.
However, you are nearly always allowed (and encouraged!) to test
your programs by actually running them on the computer where
you are sitting. Students caught cheating on an exam may receive
a grade of F for the semester, no matter how many points they
may have earned, and they will be reported to the Honor Code
office.

Faculty are responsible to establish and communicate to students their ex-
pectations of behavior with respect to academic honesty and student con-
duct in the course. Observations and reports of academic dishonesty shall
be investigated by the instructor, who will determine and take appropriate
action, and report to the Honor Code Office the final disposition of any inci-
dent of academic dishonesty by completing an Academic Dishonesty Student
Violation Report. If the incident of academic dishonesty involves the vio-
lation of a public law, e.g., breaking and entering into an office or stealing
an examination, the act should also be reported to University Police. If an
affected student disagrees with the determination or action and is unable
to resolve the matter to the mutual satisfaction of the student and the in-
structor, the student may have the matter reviewed through the university’s
grievance process.

1.9.2 Dress and Grooming Standards

The dress and grooming of both men and women should always be modest,
neat and clean, consistent with the dignity adherent to representing The
Church of Jesus Christ of Latter-day Saints and any of its institutions of
higher learning. Modesty and cleanliness are important values that reflect
personal dignity and integrity, through which students, staff, and faculty
represent the principles and standards of the Church. Members of the BYUH
community commit themselves to observe these standards, which reflect the

CHAPTER 1. SYLLABUS 21

direction given by the Board of Trustees and the Church publication, “For
the Strength of Youth.” The Dress and Grooming Standards are as follows:

Men. A clean and neat appearance should be maintained. Shorts must
cover the knee. Hair should be clean and neat, avoiding extreme styles or
colors, and trimmed above the collar leaving the ear uncovered. Sideburns
should not extend below the earlobe. If worn, moustaches should be neatly
trimmed and may not extend beyond or below the corners of mouth. Men
are expected to be clean shaven and beards are not acceptable. (If you have
an exception, notify the instructor.) Earrings and other body piercing are
not acceptable. For safety, footwear must be worn in all public places.

Women. A modest, clean and neat appearance should be maintained.
Clothing is inappropriate when it is sleeveless, strapless, backless, or reveal-
ing, has slits above the knee, or is form fitting. Dresses, skirts, and shorts
must cover the knee. Hairstyles should be clean and neat, avoiding extremes
in styles and color. Excessive ear piercing and all other body piercing are
not appropriate. For safety, footwear must be worn in all public places.

1.9.3 Accommodating Special Needs

Brigham Young University–Hawai‘i is committed to providing a working
and learning atmosphere, which reasonably accommodates qualified persons
with disabilities. If you have any disability that may impair your ability to
complete this course successfully, please contact the students with Special
Need Coordinator, Leilani A‘una at 808-293-3518. Reasonable academic ac-
commodations are reviewed for all students who have qualified documented
disabilities. If you need assistance or if you feel you have been unlawfully
discriminated against on the basis of disability, you may seek resolution
through established grievance policy and procedures. You should contact
the Human Resource Services at 808-780-8875.

1.9.4 Sexual Harassment

Title IX of the education amendments of 1972 prohibits sex discrimina-
tion against any participant in an educational program or activity that re-
ceives federal funds, including federal loans and grants. Title IX also cov-
ers student-to-student sexual harassment. If you encounter unlawful sexual
harassment or gender-based discrimination, please contact the Human Re-
source Services at 808-780-8875 (24 hours).

Chapter 2

Calendar

Following is the projected calendar. Items marked with ** are firmly sched-
uled. Other topics and due dates may change.

Mo Jan 06 37: o1 First Webpage
We Jan 08 36: Unit 2: Input, g21 Hi Fred
Fr Jan 10 35: Unit 1: Output, oR Random Number

Mo Jan 13 34: oD Dice, images.
We Jan 15 33: cM Mad Lib
Fr Jan 17 32: ** exam 0 practice test

Mo Jan 20 ** No Class: Human Rights Day
We Jan 22 31: Unit 3: Math, g31 Before After
Fr Jan 24 30: ** exam 1

Mo Jan 27 29: Unit 4: Decisions, g41 Numeric Decision
We Jan 29 28: g42 Birthday
Fr Jan 31 27: Unit 5: Decisions, g51 Phone Book

Mo Feb 03 26: oM Mad Lib
We Feb 05 25: Unit 6: Loops
Fr Feb 07 24: ** exam 2

Mo Feb 10 23: oF Farm1
We Feb 12 22: Unit 7: Arrays, g71 Array 1
Fr Feb 14 21: g72 Roll

Mo Feb 17 ** No Class: Presidents Day
We Feb 19 20: oT LocalTime
Fr Feb 21 19: ** exam 3

Mo Feb 24 18: g34 Celsius
We Feb 26 17: g45 Afford

22

CHAPTER 2. CALENDAR 23

Fr Feb 28 16: oHL High Low
Mo Mar 03 15: oHL High Low
We Mar 05 14: oD2 Multi Dice
Fr Mar 07 13: ** exam 4

Mo Mar 10 12: Discuss Subroutines
We Mar 12 11: oF2 Farm 2
Fr Mar 14 10: Unit 8: Subroutines, oF2 Farm 2

Mo Mar 17 9: oF2 Farm 2
We Mar 19 8: g43 Leap Year
Fr Mar 21 7: ** exam 5

Mo Mar 24 6: g64 Factors
We Mar 26 ** No Class: Kuhio Day
Fr Mar 28 5: g75 Tally

Mo Mar 31 4: oB Boring
We Apr 02 3: oJS JavaScript
Fr Apr 04 2: ** exam 6

Mo Apr 07 1: late work makeup
Tu Apr 08 ** All Late-Work Deadline, 23:59
We Apr 09 0: ** exam 7 Final Exam, 10:00–12:50

Chapter 3

Problem Solving

Sometimes things will not work. But all is not lost. This chapter has ideas
for understanding and solving the kinds of problems we often encounter.

Contents

3.1 cPanel Login Problems 24

3.2 Programming Problems 24

3.3 Webpage Problems 25

3.3.1 Webpage Does Not Load 25

3.3.2 404 Error . 25

3.3.3 Internal Server Error 26

3.3.4 Blank or Incomplete Webpage 26

3.1 cPanel Login Problems

If you are trying to use cPanel and have trouble logging in, the person to see
is Micah Uyehara, in GCB 106. His email address is <micah.uyehara@byuh.edu>.
He runs the IS2 machine where our cPanel accounts are stored.

3.2 Programming Problems

When you run your program from the command line, it will either work or
not. If it does not work, it could be because of a syntax error, or it could

24

CHAPTER 3. PROBLEM SOLVING 25

be because of a logic error.

Syntax errors are mistakes in the wording of how you said something.
The most common syntax error is the missing semi-colon. Each statement
should end with a semi-colon. If it is missing, then the program cannot be
understood by the computer, and it will fail.

The computer will generally give you an error message that tells what line
it got up to before it knew it had an error. Often this is the line right after
the actual error. If there is an error on line 10, the computer may not notice
it until it is working on line 11. Then it will report a problem on line 11,
even though the actual problem is on line 10.

Logic errors are mistakes in what you were asking the computer to do.
Maybe you forgot to initialize a variable. Maybe you did two steps in the
wrong order. Maybe you left something out.

One of the best solutions for finding and fixing logic errors is the print
statement. Print out information as your program runs, things like “I got
to line 12” or “the value of $i is 15”. This is called debug information. It
can be helpful for seeing what is going on. Compare that with what you
expected. Usually that helps narrow down the mistake.

3.3 Webpage Problems

3.3.1 Webpage Does Not Load

If you are trying to load a webpage that I mention in this study guide,
and the webpage does not load, it could be a DNS (domain name system)
problem. In any case, the person to see is Micah Uyehara, in GCB 106. He
runs our department DNS system.

In the past this has sometimes been a problem for students living on cam-
pus, because of the special way that the CIS department is “sandboxed” to
protect the rest of the university from the weird things we occasionally do.
But Micah has solutions.

3.3.2 404 Error

404 is the error number used by the world wide web to indicate a missing
webpage. If you get a 404 error when trying to see your own webpage, it

CHAPTER 3. PROBLEM SOLVING 26

means the browser asked for the page and the server said it does not exist.

The most common cause of this problem is spelling things differently than
expected.

If your webpage should be named “index.html” and you actually name it
“Index.html” it will not be found. Pay attention to capitalization.

If your folder should be named “myproject” and you name it “my project”
(with a space) it will not be found.

I have even seen problems when the student accidentally put a space at the
end of a file name, like “index.html ”.

3.3.3 Internal Server Error

This means that your program tried to run, but that it did not return a
usable webpage.

The first thing to try is this. Copy your whole web program and try running
it from the command line. If there are any error messages, you can see what
line is causing the first problem. Fix the first problem and then run your
program again. (If there is a second problem, often it was caused by the
first problem, so don’t worry about it unless it is still there after fixing the
first problem.)

If that all looks good, then check the first few lines of program output. The
first line should be “content-type: text/html”. It must be spelled exactly
right, no extra spaces, no blank lines in front.

3.3.4 Blank or Incomplete Webpage

Your program may run but create a webpage that is incomplete. For exam-
ple, maybe it has a heading but nothing after that.

Use the “show page source” command in your browser. Sometimes that will
uncover problems such as missing tag endings, like if you said </h1 when
you meant to say </h1>.

Chapter 4

DCQuiz: My Learning
Management System

Contents

4.1 Grade Book . 28

4.2 Daily Update . 28

4.2.1 Study Time . 28

4.2.2 Comment . 28

4.2.3 Genuine Questions 29

4.3 Exams . 29

4.3.1 Taking Exams . 30

4.3.2 Reviewing Exams 31

4.4 Other Features . 32

I have developed my own learning management system (LMS) that will be
used for this course. Other LMS examples include BlackBoard, Canvas, and
Moodle. I did not write them. I currently do not use them.

https://dcquiz.byuh.edu/ is the DCQuiz URL.

Since I wrote it myself, I am also responsible for any bugs that may be in
its programming. If you notice any bugs, I hope you will let me know so I
can get them fixed.

I can also make improvements when I think of them. I like that.

27

https://dcquiz.byuh.edu/

CHAPTER 4. DCQUIZ: MY LEARNING MANAGEMENT SYSTEM 28

4.1 Grade Book

The most important place you will see DCQuiz is the grade book.

I use DCQuiz to manage my grade book for this class. You will be able
to see the categories in which points are earned, and how many points are
credited to you.

You will also be able to see how many points are credited to other students,
but you will not be able to see which students they are.

This gives you the ability to see where you stand in the class, on a category-
by-category basis, and in terms of overall points. Are you the top student?
Are you the bottom? Are you comfortable with your standing?

4.2 Daily Update

Another place you are likely to see DCQuiz is the daily update.

Typically in class I start with a quiz called the Daily Update. It usually
runs the first five minutes of class, and is followed by the opening prayer.

By having you log in and take the daily update quiz, I also get to see who
is in class, in case I need a roll sheet and I did not take roll in some other
way.

4.2.1 Study Time

Generally I give you the opportunity to tell me how much study time you
have accumulated since the last reporting. Normally this is reported on the
first class of the week, and covers the prior week (Sunday through Saturday).

4.2.2 Comment

Generally I also give you an opportunity to make an anonymous comment.
This can be anything you want to say. It might include announcements,
such as birthdays or concerts. It might include questions. It can be a simple
greeting.

Comments provide a chance for each student to say something without the
embarrassment of everyone else knowing who said it. You can say how

CHAPTER 4. DCQUIZ: MY LEARNING MANAGEMENT SYSTEM 29

unfair you think I am for something. You can ask about something you find
confusing.

I introduce it something like this:

If you wish, you can type in a comment, question, announcement, or other
statement at the start of class for us to consider. Or you can leave this
blank.

This is a good opportunity to ask about something you find confusing.

The identity of the questioner (you) will not be disclosed to the class, and
normally I will not check (although I could). My goal is for this to be
anonymous.

4.2.3 Genuine Questions

I may include genuine questions in the daily update, and these can be graded.
It’s kind of unpredictable.

4.3 Exams

DCQuiz was originally developed for giving tests. My problem was hand-
writing, actually. Students would take tests on paper and sometimes I could
not read what they had written.

So I cobbled together an early version of DCQuiz to present the questions
and collect the answers.

I got a couple of additional wonderful benefits, almost immediately.

First, I got the ability to grade students anonymously. All I was seeing was
their answer. Not their handwriting. Not the color of their ink. Not their
name at the top of the paper. It was wonderful. I could grade things without
so much worry about whether every student was being treated fairly.

Second, I got the ability to share my grading results with every student in
the class. Each student can see, not only the scores earned by other students,
but the actual answers that other students put to each question. This gives
students the ability to learn from each other.

Third, it gave students a way to verify that they were being graded fairly
compared to their fellow students. If you can see your own answer, and see

CHAPTER 4. DCQUIZ: MY LEARNING MANAGEMENT SYSTEM 30

that everyone with higher points gave a better answer, that is a good thing.
If you think your answer is better, it gives you a reason to come and see the
teacher so you can argue for more points, or you can be taught the reasons
for their answers getting more points.

Fourth, it gave me the convenience of grading anywhere without carrying a
stack of papers. I could grade on vacation. (Wait. Doesn’t that make it a
not-vacation?) I could grade in class, or in my office, or at home.

Fifth, although I never did this, it theoretically has the ability for me to let
other people be graders. But I never did this.

4.3.1 Taking Exams

As it currently operates, DCQuiz lets you, the student, log in and see a list
of quizzes. (The grade book is actually just another quiz, but it is one where
I enter grades that you earned some other way.)

Quizzes typically have starting and ending times. Before the quiz starts,
there is a note telling when it will start. As the quiz gets closer, like within
an hour or two, an actual count-down clock will appear telling you how long
until the quiz is available.

Once you start the quiz, if it has an ending time, you will be able to see a
count-down timer telling you how much time you have left.

As you take a quiz, you can see the main menu, the question menu, and the
question page.

Main Menu: The main menu was already mentioned. That’s where you
see what quizzes are available.

Question Menu: The question menu shows you what questions are on this
quiz. It lets you select a question to work on. It shows you which questions
you have answered already. It shows you which answers have already been
scored. It lets you say that you are done. It lets you cancel the quiz (if that
is allowed).

Question Page: The question page shows a single question, and lets you
type in your answer. Some questions only allow a single-line answer. When
you press ENTER it takes you automatically to the next question. Other
questions let you type in several lines.

Early Grading: The question page may allow an option for early grading.

CHAPTER 4. DCQUIZ: MY LEARNING MANAGEMENT SYSTEM 31

If you think you have given your final answer, you can submit it for early
grading. If I have time, I will grade it while the test is still under way. That
could give you confidence to answer related questions, knowing that you got
something right.

Throwbacks: Along with early grading, I sometimes do something that I
call a “throwback.” That is when I look at your answer, and I think it is
very close, but maybe you missed something. If so, I may unsubmit it for
you. Then it will show up on your list of questions again. You can look at
it and read the question again, and maybe realize what it was that you had
not noticed before.

4.3.2 Reviewing Exams

When an exam is finished, DCQuiz lets me, the author of the exam, share
it with you, the student who took the exam.

You can see reviewing opportunities on the main menu.

After selecting an exam to review, you will see a question menu similar to the
one that was used for taking the exam. But instead of seeing your answer,
you will see all the scores that were earned, with your score highlighted. If
yours is the top score, it will appear first. If it is the bottom score, it will
appear last.

You can select a question to drill down and see more details. Specifically,
you can see each of the answers provided by each student that wrote an
answer. And you can see the score it received. And you can see any notes
the grader (me) may have made while grading.

This is intended to (a) let you teach yourself by seeing examples of work by
other students, and (b) let you verify that you were graded fairly. (Every
once in a while, maybe a few times per semester, a student will see that I
entered their grade wrong, or I overlooked something. This is your chance
to get errors fixed.)

Sometimes an exam is not open for review. The teacher gets to decide.
But even if the exam is closed, you can still see the question menu (with the
questions blanked out), and you can see your score and everyone else’s score.
Questions and answers are not available, but scores are available, even long
after you took the test.

Sometimes an exam is deleted or revised and reused. The teacher gets to

CHAPTER 4. DCQUIZ: MY LEARNING MANAGEMENT SYSTEM 32

decide. When an exam is deleted, all questions and answers and scores are
also deleted. After that, there is no way to see anything about that exam.

I generally revise and reuse the daily update exams. This causes all answers
and scores to be deleted, but I keep the questions and just modify them for
the next class meeting.

4.4 Other Features

DCQuiz has other features, such as the ability to limit where a test is taken,
or to require a special code to access a test. Those features will be explained
in class if they are ever needed.

Chapter 5

Activities General
Information

Contents

5.1 oXX: Online General Rules 34

5.2 cXX: Command-Line General Rules 35

5.3 gXX: GradeBot Task General Rules 35

5.4 Email Submission Rules 37

5.4.1 To: Line . 37

5.4.2 Subject Line . 37

5.4.3 Body When Submitting a Program 38

We assume you are studying outside of class time, and that the text book
that I provide contains enough background information to avoid lots of lec-
turing in class.

My intention is that we will do in-class activities many times through the
semester.

Chapter 8 (page 51), the Activities chapter, will be updated as new activities
are assigned. Check there for activity details.

This current chapter explains the general rules that apply to each of the
types of activities that will be assigned.

Discussed means the date we talked about it in class.

33

CHAPTER 5. ACTIVITIES GENERAL INFORMATION 34

5pt Due Date means the date by which you must complete the assignment
for it to earn 5 points.

4pt Due Date means the date by which you must complete the assignment
for it to earn 4 points, if you miss the 5pt Due Date.

3pt Due Date means the date by which you must complete the assignment
for it to earn 3 points, if you miss the 4pt Due Date.

The 3pt Due Date is usually Tue, Apr 8, 23:59.

23:59 means 11:59 PM.

If you are submitting something after the 5pt Due Date but before the 3pt
Due Date, you must either submit it by email or else notify me by email so
I know to grade it.

Grading Label means a short label I use to track this activity for grading
purposes. Online activities have labels that start with o. GradeBot activities
have labels that start with g. Command-line activities have labels that start
with c.

Grades will be posted to the “CIS 101 Activities” grade book in the column
specified by the grading label.

5.1 oXX: Online General Rules

Online tasks generally follow these rules. Exceptions and clarifications are
provided for each task.

Label: Each online task has a grading label consisting of the letter “o” (for
online) followed by (normally) two other characters that specify which online
task it is.

Task: Create a webpage (index.html) or CGI program (index.cgi) that is
properly linked to the CIS 101 student projects page. It should clearly
display your name. Other requirements vary by task.

How to Submit: Create a webpage properly linked to the student projects
page. I normally grade everyone’s submissions at once.

Late Work: If you complete or improve your work so that regrading may
be justified, tell me so via email. Follow the email rules in section 5.4 (page
37) in the construction of your subject line.

CHAPTER 5. ACTIVITIES GENERAL INFORMATION 35

5.2 cXX: Command-Line General Rules

Command-line tasks generally follow these rules. Exceptions and clarifica-
tions are provided for each task.

Label: Each command-line task has a grading label consisting of the letter
“c” (for command-line) followed by (normally) two other characters that
specify which online task it is.

Task: Write a program. Requirements vary by task.

Follow the email rules in section 5.4 (page 37) as you construct your subject
line and the body of your message.

If your submission was not acceptable, I will reply to it giving at least one
reason that it was not acceptable. (There may be other problems that I did
not notice or mention.) Normally you should fix the problem and resubmit
your program.

If your submission was acceptable, I will reply to it with the word “Success”
and possibly additional comments.

5.3 gXX: GradeBot Task General Rules

GradeBot itself is explained in chapter 6 (page 40).

GradeBot tasks generally follow these rules. Exceptions and clarifications
are provided for each task.

Label: Each GradeBot task has a grading label consisting of the letter
“g” (for gradebot) followed by (normally) two other characters that specify
which online task it is.

Currently those characters are numeric digits.

Lab ID: Within GradeBot, each task has a lab ID (name). Normally this
ID consists of “cis101.(label).(word)” where (label) is the label above (with
or without the g prefix), and (word) helps identify and describe the lab.

Task: Write a program. GradeBot gives further directions for each program.

Have GradeBot test your program. When your program is running correctly,
you will get this message:

Success! No errors found. Nice job. Assignment complete!

CHAPTER 5. ACTIVITIES GENERAL INFORMATION 36

After receiving this message, you can submit your program to me. I may
require additional things, such as the use of specific program elements, or
specific style.

Follow the email rules in section 5.4 (page 37) as you construct your subject
line and the body of your message.

Specifically, your subject line should look like this:

cis101 gxx lastname, firstname is the required subject line.

where gxx is replaced by the grading ID number, lastname is replaced by
your lastname as shown on my roll sheet, and firstname is replaced by your
firstname as shown on my roll sheet. (You can put a comma between last-
name and firstname if you want.)

The body of your email should be your program and nothing else, in plain
text. The first line of your program must be a comment line (in Perl) that
repeats the subject line but with a hash in front, like this:

cis101 gxx lastname, firstname is the required comment line.

Is it difficult for me to tell what part of your email is your program? Submit
only your program, and not anything else.

Is your program not copy-paste ready? For example, does it have > at the
front of any of the lines? It should not.

Is your program in plain text or rich (html) text? It should be in plain text.
Sometimes the use of rich text changes your program by inserting invisible
characters that make your program fail. For that reason, I may reject any
program sent as rich text.

If your submission was not acceptable, I will reply to it giving at least one
reason that it was not acceptable. (There may be other problems that I did
not notice or mention.) Normally I tell you to fix the problem and resubmit
your program.

If your submission was acceptable, I will reply to it with the word “Success”
and possibly additional comments. You may want to save my reply until
you see your grade reflected in my gradebook.

CHAPTER 5. ACTIVITIES GENERAL INFORMATION 37

5.4 Email Submission Rules

In some cases, I require you to submit your work by email. When email is
involved, there are a few rules I need you to follow.

If your program violates the rules enough that grading becomes difficult, I
will probably reply to your submission telling you what rules you violated
and asking you to fix and resubmit.

5.4.1 To: Line

Please send email to <doncolton2@gmail.com>. That is my preferred email
address.

If you cannot use that, you are welcome to email to <don.colton@byuh.edu>.
They both ultimately go the same place, so you do not need to send to both.
Either one is fine.

5.4.2 Subject Line

The subject line of the email must be as follows:

cis101 label lastname, firstname

The reason for this rule is to facilitate the recording of grades. When I
receive your email, it may be in the midst of many other emails from other
students. I need to keep things straight so that I can record your grade
properly.

The label part is replaced by the grading label for that assignment.

The lastname part is to be replaced by your own last name.

The firstname part is to be replaced by your own first name. This is the
name that you asked me to use for you. I use that name in my grade book.

When I go to record your grade, I scan down my grade book, which is sorted
by lastname and firstname. If I do not see the lastname and firstname that
you provided, it requires extra steps for me to verify which person should
receive credit. I would prefer to have you do those extra steps instead of
me.

So, for example, if I were submitting task p1 and my lastname were Colton
and my firstname were Don, I would use this subject line:

CHAPTER 5. ACTIVITIES GENERAL INFORMATION 38

cis101 p1 Colton, Don

5.4.3 Body When Submitting a Program

If you are submitting a program, the remainder of the email should be that
program, and nothing else unless the assignment specifically requires it.

Do not send your program as an attachment. Send it directly in-line as plain
text so I will see it immediately when I open your email.

The first line of your program must be a comment line that repeats the
required subject line. This is to facilitate the recording of grades.

In Perl, # is used to start a comment line. So, following the previous example
from above, I would have this comment line as the first line of my program.

cis101 p1 Colton, Don

The email must be in plain-text form. It should not be in html form or
rich text form or in the form of an attachment. In plain text, there is no
coloring to the letters. There is no bold or italics.

The reason for this rule is to facilitate testing of your program. When I
receive your email, I may need to test it by running it. I do this by doing a
copy-paste from your email into GradeBot (for instance) or into an empty
program file. Then I run your program.

I should be able to use copy-paste to make a copy of your program for
testing.

The problem is that sometimes rich text inserts invisible characters into
your program in a way that makes it impossible for a cut-and-paste of the
program to run. Then I am faced with the choice of rejecting the program,
or finding and deleting the bogus characters.

Also, please make it easy for me to tell where your program begins and ends.
If you have anything else in your email, make sure it is clearly separated from
your program.

I do not accept programs sent as attachments because of the extra work it
requires on my end.

You must avoid having each line of your program start with > or >> as is
common when you are replying. Having those characters makes it impossible
to copy-paste and run your program.

CHAPTER 5. ACTIVITIES GENERAL INFORMATION 39

If your program includes any long comments, make sure each line of the long
comment starts with the # character. Otherwise, the program will not run.
I mention this because your email client may automatically break up long
lines, thus converting your correct and working program into an incorrect
and broken program. Be alert to this possibility and protect against it by
not using long lines.

Chapter 6

GradeBot

GradeBot is my automated program grader.

Contents

6.1 Where Can I Find GradeBot? 41

6.2 Source Code File 41

6.3 Choice of Language 41

6.4 Standard In, Standard Out 42

6.5 The Grading Script 42

6.6 Interpreting GradeBot’s Requirements 43

I normally grade programming activities based on the following three crite-
ria.

Behavior: How does the program respond to various situations? This is
always important.

Style: How clearly is the program written? My standards vary from course
to course and from assignment to assignment.

Algorithm: What algorithms are used? Were they efficient? My standards
vary from course to course and from assignment to assignment.

When I grade on style and algorithm, I usually rely on visual inspection of
the program source code.

When I grade on behavior, I try to use GradeBot. GradeBot verifies that
your program seems to be running correctly by giving your program test

40

CHAPTER 6. GRADEBOT 41

cases to solve, and then seeing whether your program returns the correct
answer each time.

This particular version of GradeBot is called GradeBot Lite because it is
descended from what used to be a huge system that was also called Grade-
Bot.

6.1 Where Can I Find GradeBot?

http://gradebot.tk/ is the web interface for GradeBot.

http://gbot.is2.byuh.edu/ is an alternate URL that you can use in case
the short URL does not work for you.

If you want to explore, press the [List All Labs] button. Then pick a lab
from the list and press its button.

GradeBot will give you a “SAMPLE EXECUTION” to show the behavior
it is expecting from your program.

6.2 Source Code File

To keep things simple, GradeBot requires you to submit a single file of source
code. You are not able to write modules as separate files, and compile them
separately and then link the results. Such abilities are present in Integrated
Development Environments, but not in GradeBot. Everything must fit into
a single file. In some languages, this can be an uncomfortable restriction.

GradeBot does allow you to type your program directly into the web in-
terface. It also allows you to upload your file by selecting it on your local
computer.

If you use the web interface, GradeBot will (incorrectly) tell you “ERROR:
uploaded file type: empty”. You should ignore this message. Someday I will
get it fixed.

6.3 Choice of Language

GradeBot is able to accept programs in several different languages. The list
includes C, C++, Java, Perl, Python, Ruby, and Tcl.

http://gradebot.tk/
http://gbot.is2.byuh.edu/

CHAPTER 6. GRADEBOT 42

You must tell GradeBot what language you are using. Simply click on the
appropriate radio button.

When grading your program, GradeBot will compile or interpret your pro-
gram and then check its behavior. If your program has syntax errors, Grade-
Bot will let you know. If there are no syntax errors, GradeBot will run your
program.

Java: This popular language is perhaps the most disadvantaged with Grade-
Bot for several reasons: (a) Java likes to have separate files; (b) Java takes
a long time (half a second) to start, so 20 tests will take 10 seconds if you
are lucky. The bottom line is that Java can be used, but it is a bit harder
to make things work.

6.4 Standard In, Standard Out

Rigorous testing of computer programs is actually very difficult. To make
it possible, I have made some decisions to keep things as simple as possible.

Tasks are generally limited to programs that read input from STDIN and
write output to STDOUT. Beyond that, it can provide input through com-
mand line arguments, and it can inspect the return value from the programs
it is testing.

That means that GradeBot does not get involved with mouse-based input,
or network-based input or output, or graphical outputs.

Generally GradeBot does not get involved with reading and writing files, or
accessing databases.

GradeBot also limits the amount of time each program is allowed to run.

6.5 The Grading Script

GradeBot has a version of each program you are asked to write. It generates
sample inputs (somewhat randomly), runs its own version of the program,
and collects the outputs. That is used to make a script: say this to the
program, wait for the program to say this, repeat.

Your program is tested by seeing whether it can follow the script. Your
program must behave exactly the same as GradeBot’s program did.

CHAPTER 6. GRADEBOT 43

This puts some serious constraints on your program. You must get all the
strings right. If GradeBot wants “Please enter a number: ” then that’s
exactly what your program must print. You may find yourself squinting
at the output where GradeBot says you missed something. Usually it is a
minor typographical error.

Once you get the first test right, GradeBot typically invents another test
and has you run it. And another. And another. Eventually, you either
make a mistake, or you get them all correct.

If you make a mistake, GradeBot will tell you what it was expecting, and
what it got instead.

If you get everything correct, GradeBot will announce your success. That
means your program’s observable behavior is correct.

6.6 Interpreting GradeBot’s Requirements

GradeBot is very picky. That is because it is really hard to tell when some-
thing is almost right, or close enough. GradeBot’s only real choice is to
require absolute perfection. That means spelling and spacing must be ex-
act.

GradeBot shows you exactly what it wants, and exactly what you provided.
Sometimes it can tell you what is wrong, but often you have to compare
things and figure it out yourself. Just do a careful side-by-side comparison
and adjust your spelling and spacing to make GradeBot happy.

(GradeBot may actually do things wrong in some cases. Maybe GradeBot
spells something wrong or uses the wrong grammar. If you run into a case
like that, the simple solution is to play along and do it the way GradeBot
wants. You can also let me know where GradeBot is wrong and I may be
able to fix it.)

Standard Input

“in>” is shown to designate input that your program will be given (through
the standard input channel).

CHAPTER 6. GRADEBOT 44

Standard Output

Numbered lines are shown to designate output that your program must
create.

Quotes are shown in the examples to delimit the contents of the input and
output lines. The quotes themselves are not present in the input, nor should
they be placed in the output.

Each line of output ends with a newline character unless specified otherwise.

“eof” stands for end of file and means that your program must terminate
cleanly.

Command Line Inputs

GradeBot will start your program by saying this:

GradeBot started your program with this command line:

It will then present the command line that was used to start your program.
Often there is no special command line input, and the command line simply
starts your program. Sometimes there are command line arguments. Here
is an example:

"./gcd 35 28"

In this example, ./gcd is the name of your program that is being run. 35 is
the first command line argument. 28 is the second command line argument.

In most languages, command line arguments are available as an array named
“argv” or “args” or something similar.

Return Codes

When your program terminates, it must send back a return code of zero
unless something else was specified in the requirements. Many languages do
this automatically.

For C programs, remember to start your program with “int main” and end
it with “return 0;”

For other languages, do something similar if necessary.

Chapter 7

Programming Style

As your programs become more complex, style becomes important.

Contents

7.1 Other Than CIS 101 46

7.2 In CIS 101 . 46

7.3 Spacing . 46

7.4 Use the Values Specified 47

7.5 Parentheses: Math vs Array 48

7.6 One Statement per Line 48

7.7 Indenting . 49

7.8 Helpful Blank Lines 49

7.9 Helpful Names . 49

You should use good style. I consider programming style to be very impor-
tant. I have different rules for CIS 101 and for the other classes I teach.
This chapter explains those rules.

In real life programming situations, it is common for work groups to adopt
style rules. By using the same style, programs tend to be easier to read and
understand. For most of the problems on each test, specific style is required.

Because style is a huge aid to making your program easier to read, I have
developed the following style rules.

45

CHAPTER 7. PROGRAMMING STYLE 46

7.1 Other Than CIS 101

In CIS 101 I am partly on a mission to teach you to use good style. As part
of that I have very specific rules that I enforce. In other classes, my style
rules are much more simple, and are as follows.

Style is really all about making your program easy to read and update. That
is all I really care about.

If I complain about your style, what it probably means is I had trouble
understanding your program. It may run fine in the computer, but it was
difficult for me.

Your code should be readable to a programmer even if they are unfamiliar
with your particular programming language. Most programming languages
are similar enough that any programmer can read them. (Writing, on the
other hand, can often require memorization of syntax rules.)

Use comments to explain what you are trying to accomplish with the key
paragraphs of your program. Use comments to explain anything that might
be hard to understand in the future.

Indenting should correctly reveal the internal structure of your program.
It should be consistent and reasonable. I personally like indenting by two
spaces for each additional level of nesting.

Variable names should helpfully describe the contents they hold. Subroutine
names should helpfully describe what they do.

7.2 In CIS 101

The remainder of this chapter gives the very specific style rules that I enforce.

7.3 Spacing

The first style rule I require is spacing. I am very picky. You must put one
space between tokens. There are a few exceptions.

Example: (3+5) is bad because not enough spaces.

Example: (3 + 5) is good because spacing is perfect.

CHAPTER 7. PROGRAMMING STYLE 47

This requires that you know what a token is. I cover this in the text book.

Mistake: adding spaces inside a quoted string changes its meaning. A quoted
string is by itself a single token. I require spaces between tokens, not within
tokens.

Exception: You may omit the space before a semi-colon.

Example: $x = (3 + 5); is okay.

Exception: You may omit the space between a variable and a unary operator.

Example: $x++; is okay.

Example: $x = -$y; is okay.

7.4 Use the Values Specified

Often a problem will specify certain numbers or strings that define how the
program should run. If possible, use those exact same values in writing your
program. If not, include a comment that has the exact value.

Example: Print “Hello, World!”

Good: print "Hello, World!"

Okay: print "Hello, World!\n"

Bad: print "hello, world!" (wrong capitalization)

Bad: print " Hello, World! " (extra spaces)

Example: Print the numbers from 1 to 100.

Good: for ($i = 1; $i <= 100; $i++) { print $i }

Bad: for ($i = 1; $i < 101; $i++) { print $i }

If you cannot use the exact value specified in your program itself, then use
the exact value in a comment nearby.

Example: If the last name is in the A-G range, do something.

Good: if (uc $ln lt "H") { # A-G

CHAPTER 7. PROGRAMMING STYLE 48

7.5 Parentheses: Math vs Array

In the form $x = (something); there is a confusing ambiguity. I do not
allow it because it is confusingly ambiguous.

The problem is ambiguity. It has two possible meanings. Perl probably
handles it okay, but I still do not accept it.

Parentheses can be used in a mathematical expression to force a certain
order of operations.

Example: $x = (3 + 2) * 5; # this is okay

Example: $x = ((3 + 2) * 5); # this is not okay

Parentheses are also used in defining arrays.

Example: @x = (3); # this is okay

Here is the ambiguity that we wish to avoid:

Example: $x = (3); # $x will be 3

Example: $x = @x = (3); # $x will be 1

Bottom line? Do not put parentheses around a whole expression or state-
ment. If you do, I will probably mark it wrong.

7.6 One Statement per Line

Each statement should be on its own line.

In real life, statements are often combined onto one line if they are closely
related. This is not real life. For exams, it is easier if I have a simple rule
and stick with it.

Start a new line after each opening { or semi-colon.

Exception: The for loop uses two semi-colons to separate its control struc-
ture (init; condition; step). You should not normally start a new line after
those semi-colons.

Exception: A relevant comment can be placed after a semi-colon.

CHAPTER 7. PROGRAMMING STYLE 49

7.7 Indenting

Indent is the number of blanks at the start of each line.

The main program should not be indented. There should be no spaces in
front of the actual code.

Blocks are created by putting { before and } after some lines of code. This
happens with decisions, loops, and subroutines.

Within the block, I require indenting to be increased by two.

Warning: Because crazy indenting makes programs substantially harder to
read, I have become very picky about this.

Warning: If you write your program using an editor like notepad++, and
then cut-and-paste it to save as your exam answer, the indenting may be
messed up. You should go back through your program and fix any indenting
problems that may have occurred.

Common Error: using TAB instead of two spaces. I will mark it wrong.

Common Error: using one space instead of two spaces. I will mark it wrong.

7.8 Helpful Blank Lines

Blank lines are used to divide a program into natural “paragraphs.” The
lines within each paragraph are closely related to each other, at least as seen
by the programmer.

Rule: Keep things fairly compact. Use blank lines and comments to help
visually identify groups of related lines. Do not use an excessive number of
blank lines.

7.9 Helpful Names

Variables and subroutines are named. The computer does not care how
meaningful the names are that you use, but programmers will care. I will
care. The names should be helpful. They should bear some obvious rela-
tionship to the thing they represent.

Long descriptive names can be abbreviated and explained when used.

CHAPTER 7. PROGRAMMING STYLE 50

Example: $eoy = 1; # eoy means end of year, 1 means true.

Names like $x and $y may be used in short-range contexts where their
meaning is clear by the immediately surrounding code. Like “he”, “she”,
and “it” in English, they become confusing in wider contexts. Use something
more meaningful.

Chapter 8

Activities Assigned

Activities give you a way to develop and test your programming skills.

Contents

8.1 o1: First Webpage 53

8.1.1 Online Expectations 54

8.2 g21: Hi Fred . 56

8.3 oR: Random Number 57

8.4 oD: Dice . 59

8.5 cM: Mad Lib . 61

8.6 g31: Before After 62

8.7 g41: Numeric Decision 63

8.8 g42: Birthday . 64

8.9 g51: Phone Book 66

8.10 oM: Mad Lib . 67

8.11 oF: Farm 1 . 70

8.12 g71: Array 1 . 71

8.13 g72: Roll . 73

8.14 oT: LocalTime . 75

8.15 g34: Celsius . 76

8.16 g45: Afford . 77

8.17 oHL: High Low . 79

8.18 oD2: Multi Dice 81

8.19 oF2: Farm 2 . 83

8.19.1 Main Program: Crops 83

51

CHAPTER 8. ACTIVITIES ASSIGNED 52

8.19.2 Main Program: Call “plant” 84

8.19.3 Subroutine “Plant” 84

8.19.4 Main Program: Harvesting Call 84

8.19.5 Subroutine “Harvest” 85

8.20 g43: Leap Year . 86

8.21 g64: Factors . 88

8.22 g75: Tally . 89

8.23 oB: Boring . 90

8.24 oJS: JavaScript . 91

This chapter lists the activities that have been assigned. As new activities
are assigned, they will be added to this chapter.

CHAPTER 8. ACTIVITIES ASSIGNED 53

8.1 o1: First Webpage

• Status: Officially Assigned.
• Discussed: Mon, Jan 6
• 5pt Due Date: Wed, Jan 8, 12:00
• 4pt Due Date: Fri, Jan 10, 12:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: o1

This is an online task, but you do not need to send me the code that you
write. It just needs to work when I test it online. The general rules in
section 5.1 (page 34) apply.

If you are requesting a regrade, this is the required subject line:
cis101 regrade o1 lastname, firstname

We will try to do this in class the first day. If you miss class that day, please
work with one of the tutors to complete the assignment.

Log into cPanel. Go into File Manager.

Go into your public_html directory (folder).

Create a directory (folder) with cis101.2141 as its name. The cis101 part
stands for this class. The 2141 part stands for this semester.

In that directory create a file with index.html as its name. Be careful
that you do not create INDEX.HTML or anything else that is not index.html
exactly.

Construct a webpage. Make sure you at least have this minimum content:
head, title, body, h1, image.

Avoid these problems: any HTML syntax error, copied content that is not
properly updated.

You can use the following lines as an example. You can use cut-and-paste if
you want, but it is better to type them in so you start thinking about what
they mean. If you have more HTML skills than this, feel free to do a more
impressive job.

<!DOCTYPE html><head lang=en><meta charset=utf-8>

<title>Don’s CIS 101 Homepage</title>

<meta name=description content="Don’s CIS 101 Homepage">

CHAPTER 8. ACTIVITIES ASSIGNED 54

</head><body>

<h1>This is Don’s CIS 101 Homepage</h1>

</body>

Change the name “Don’s” to match your own name, of course.

Upload a picture of yourself. It can simply be something that represents
you, or it can be an actual picture of yourself. Name it whatever you want,
so long as the webpage works correctly.

Verify that you can reach your page through clicking on your o1 link on the
CIS 101 Student Projects webpage, which is:

http://dc.is2.byuh.edu/cis101.2141/

8.1.1 Online Expectations

This is not a web design class, but there are a few simple things that I will
expect anyway. They are good habits to get into. I will enforce them from
time to time.

For anything you put online, including webpages created by hand and those
created by running a program, there are a few expectations that I have. The
following things should be present, in this order.

1. Have a proper DOCTYPE statement.

Example: <!DOCTYPE html>

2. Have a proper head statement.

Example: <head lang=en>

3. Have a proper meta charset statement.

Example: <meta charset=utf-8>

4. Have a proper title. Titles are up to about 50 characters long.

Example: <title>Don’s Page About Whatever</title>

5. Have a proper meta description statement. Descriptions are about two
lines long, typically. They are used by search engines to describe your web-
page. They are not the same as your title.

Example: <meta name=description content="Don’s Page About Whatever">

http://dc.is2.byuh.edu/cis101.2141/

CHAPTER 8. ACTIVITIES ASSIGNED 55

6. Have a proper style section, even if it is empty. Between these lines you
would put any styling you will be doing.

Example starting line: <style>

Example ending line: </style>

7. Have a proper body statement.

Example: <body>

8. Have a proper h1 statement that identifies yourself and your project.
Typically this is similar to your title.

Example: <h1>Don’s Project About Whatever</h1>

In addition to all of that, I should not see any visible errors when I do a
“show page source” in Firefox.

CHAPTER 8. ACTIVITIES ASSIGNED 56

8.2 g21: Hi Fred

• Status: Officially Assigned.
• Discussed: Wed, Jan 8.
• 5pt Due Date: Fri, Jan 10, 12:00
• 4pt Due Date: Mon, Jan 13, 12:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g21

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g21 lastname, firstname is the required subject line.

cis101 g21 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

There is a chapter in the textbook, probably about chapter 4, probably
about page 35, that talks about accepting inputs.

Task: Ask for a name. Respond with “Hello, (name)!”

Sample Execution:

GradeBot would have engaged your program in this dialog:

note GBot "# debug output lines are permitted"

1: "What’s your name?"

in> "Fred"

2: "Hello, Fred!"

eof (end of output)

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 57

8.3 oR: Random Number

• Status: Officially Assigned.
• Discussed: Fri, Jan 10.
• 5pt Due Date: Mon, Jan 13, 12:00
• 4pt Due Date: Wed, Jan 15, 12:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: oR

This is an online task, but you do not need to send me the code that you
write. It just needs to work when I test it online. The general rules in
section 5.1 (page 34) apply.

If you are requesting a regrade, this is the required subject line:
cis101 regrade oR lastname, firstname

There is a chapter in the textbook, probably about chapter 9, probably
about page 68, that talks about random numbers.

Summary: Make a web program that displays a random number each time
you load it.

Warning: I am going to give you some of the information that you need.
You need to figure out what order things must happen. You are welcome
to confer with your neighbors, but do not simply trust them and copy their
work.

Log into cPanel. Go to your cis101.2141 folder. Create a sub-folder with
random as its name. In it create a file with index.cgi as its name.

This index.cgi file will be a program. Because it is a program, you must
set its permissions to 0755. Normal webpages have their permissions set to
0644.

The first line of your program must look like this, including spaces:

#! /usr/bin/perl --

The 0755 permission tells the is2 machine that this will be a program, and
the perl line tells it that it is a perl program (as opposed to php or ruby or
something else).

When your program is executed, it will print out a webpage. You can have
it print a webpage that looks like this:

CHAPTER 8. ACTIVITIES ASSIGNED 58

content-type: text/html

<!DOCTYPE html><head lang=en><meta charset=utf-8>

<title>Don’s Random Number Generator</title>

<meta name=description content="Get a random number.">

</head><body>

<h1>Don’s Random Number Generator</h1>

<h2>$random</h2>

</body>

(Unless your name is Don, it should not say Don in it.)

Remember to print that webpage. The content-type part is important. We
will talk about it in class, and you can look it up in the text book.

$random is supposed to be a variable that contains a random number. You
can create one like this:

$random = rand(30);

That will create a random number between zero and 30.

Run your program by viewing your webpage. Each time you do a reload on
your webpage, it will cause your program to run again, and a new number
will appear.

Verify that you can reach your page (and run your program) through clicking
on your oR link on the CIS 101 Student Projects webpage, which is:

http://dc.is2.byuh.edu/cis101.2135/

http://dc.is2.byuh.edu/cis101.2135/

CHAPTER 8. ACTIVITIES ASSIGNED 59

8.4 oD: Dice

• Status: Officially Assigned.
• Discussed: Mon, Jan 13.
• 5pt Due Date: Wed, Jan 15
• 4pt Due Date: Fri, Jan 17
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: oD

This is an online task, but you do not need to send me the code that you
write. It just needs to work when I test it online. The general rules in
section 5.1 (page 34) apply.

If you are requesting a regrade, this is the required subject line:
cis101 regrade oD lastname, firstname

There is a chapter in the textbook, probably about chapter 9, probably
about page 68, that talks about random numbers.

Summary: Make a web program that rolls two (or more) multi-sided dice
randomly each time you load it.

Warning: You might have to look at previous assignments, specifically the
oR assignment, for some how-to information that applies to this task.

In the proper location, create a sub-folder with dice as its name. In it create
a file with index.cgi as its name.

When your program is executed, it will print out a webpage. You can have
it print a webpage that looks like this:

content-type: text/html

<!DOCTYPE html><head lang=en><meta charset=utf-8>

<title>Don’s Dice Roller</title>

<meta name=description content="roll some dice">

<style>

body { background-color: #35ffff; text-align: center; }

</style>

</head><body>

<h1>Don’s Dice Roller</h1>

<p>We will roll some dice.</p>

CHAPTER 8. ACTIVITIES ASSIGNED 60

<p>We rolled a 1 and a 6.</p>

<p>

</p>

</body>

Instead of printing an actual 1 and 6 as shown, use variables, maybe $d1
and $d2 for dice 1 and dice 2.

$d1 = 1 + int (rand(6));

That will create a random integer between 1 and 6.

The rand(6) part will generate a number between zero and six, but it will
never actually be six. One sixth of the time it will be between 3.000 and
3.999 (more or less).

The int part converts a number like 3.14159 into an integer like 3 by cutting
off the fractional part of the number. It is like chomp, but for the fractional
parts of numbers.

After int happens, one sixth of the time the result will be exactly 3.

Run your program by reloading your webpage. Each time you do a reload
on your webpage, it will cause your program to run again, and a new dice
will appear.

You will also need images of dice. You are welcome to copy my dice from
my webpage and upload them to your own webpage.

Feeling creative? You can use another kind of dice (like a d8 or a d20).
You can use other images, maybe star, bell, cherry, rainbow, etc, like a slot
machine. But please do have at least six image choices, and at least two
displayed at a time.

CHAPTER 8. ACTIVITIES ASSIGNED 61

8.5 cM: Mad Lib

• Status: Officially Assigned.
• Discussed: Wed, Jan 15.
• 5pt Due Date: Fri, Jan 17, 13:00
• 4pt Due Date: Wed, Jan 22, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: cM

This is a command-line task. The general rules in section 5.2 (page 35)
apply, including email subject line and program comment line.

cis101 cM lastname, firstname is the required subject line.

cis101 cM lastname, firstname is the required comment line.

There is a chapter in the textbook, probably about chapter 4, probably
about page 35, that talks about accepting inputs.

A “Mad Lib” is a fill-in-the-blank story. You start with a list of words and
then you insert them into the blanks of a story. The result is sometimes
very funny.

Task: Write a program. Prompt for at least three inputs, such as “name
of a boy” or “activity that is free”. Then compose a story that uses those
inputs. Test your program. Then email it to me.

Requested: Please make the story creative and interesting.

CHAPTER 8. ACTIVITIES ASSIGNED 62

8.6 g31: Before After

• Status: Officially Assigned.
• Discussed: Wed, Jan 22.
• 5pt Due Date: Fri, Jan 24, 13:00
• 4pt Due Date: Mon, Jan 27, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g31

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g31 lastname, firstname is the required subject line.

cis101 g31 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

There is a chapter in the textbook, probably about chapter 11, probably
about page 80, that talks about calculation.

Task: Read in a number. It will be a natural (whole) number. Tell what
numbers are immediately before and after it.

Sample Execution:

GradeBot would have engaged your program in this dialog:

note GBot "# debug output lines are permitted"

1: "Please enter a number: " (no \n)

in>"5"

2: "The number before 5 is 4."

3: "The number after 5 is 6."

eof (end of output)

The good news is that this is incredibly simple mathematics. The bad news
is that this is still mathematics.

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 63

8.7 g41: Numeric Decision

• Status: Officially Assigned.
• Discussed: Mon, Jan 27.
• 5pt Due Date: Wed, Jan 29, 13:00
• 4pt Due Date: Fri, Jan 31, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g41

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g41 lastname, firstname is the required subject line.

cis101 g41 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

Approved style is required on this task. The rules in chapter 7 (page 45)
apply. Be careful with your spacing, indenting, and choice of variable names.

There is a chapter in the textbook, probably about chapter 20, probably
about page 112, that talks about numeric comparisons.

Task: See whether you can afford a certain gift or not.

Sample Execution:

1: "How much money do you have? " (no \n)

in>"1.00"

2: "How much does the gift cost? " (no \n)

in>"2.00"

(next line depends on the numbers)

3: "Sorry. You cannot afford it."

3: "Perfect. You can afford it."

eof (end of output)

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 64

8.8 g42: Birthday

• Status: Officially Assigned.
• Discussed: Wed, Jan 29.
• 5pt Due Date: Fri, Jan 31, 13:00
• 4pt Due Date: Mon, Feb 03, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g42

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g42 lastname, firstname is the required subject line.

cis101 g42 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

Approved style is required on this task. The rules in chapter 7 (page 45)
apply. Be careful with your spacing, indenting, and choice of variable names.

There is a chapter in the textbook, probably about chapter 25, probably
about page 129, that talks about and, or, not, and related operations that
might be helpful with this task.

Task: Tell how many years old a person is. This will probably involve several
if statements.

Sample Execution:

GradeBot engaged your program in this dialog:

note GBot "# debug output lines are permitted"

note GBot "# For this program, assume today is Feb 26 2014."

1: "Please enter your name: " (no \n)

in>"Michelle"

2: "What month (number) were you born, Michelle? " (no \n)

in> ..."10"

3: "What day were you born, Michelle? " (no \n)

in>"25"

4: "What year were you born, Michelle? " (no \n)

in>"1984"

5: "Ah. You were born on 1984-10-25."

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 65

6: ""

7: "Michelle, you are 29 years old."

eof (end of output)

CHAPTER 8. ACTIVITIES ASSIGNED 66

8.9 g51: Phone Book

• Status: Officially Assigned.
• Discussed: Fri, Jan 31.
• 5pt Due Date: Mon, Feb 03, 13:00
• 4pt Due Date: Wed, Feb 05, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g51

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g51 lastname, firstname is the required subject line.

cis101 g51 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

Approved style is required on this task. The rules in chapter 7 (page 45)
apply. Be careful with your spacing, indenting, and choice of variable names.

There is a chapter in the textbook, probably about chapter 26, probably
about page 133, that talks about string comparisons. They are basically
like numeric comparisons, but use different operators.

Task: Tell what page of the phone book has the name you seek.

Sample Execution:

1: "Page 20 of the phone book starts with Davis and ends with Dodson."

2: "What name do you seek? " (no \n)

in>"Ditto"

3: "It would be on page 20."

eof (end of output)

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 67

8.10 oM: Mad Lib

• Status: Officially Assigned.
• Discussed: Mon, Feb 3
• 5pt Due Date: Wed, Feb 5, 13:00
• 4pt Due Date: Fri, Feb 7, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: oM

This is an online task, but you do not need to send me the code that you
write. It just needs to work when I test it online. The general rules in
section 5.1 (page 34) apply.

If you are requesting a regrade, this is the required subject line:
cis101 regrade oM lastname, firstname

There is a chapter in the textbook, probably about chapter 10, probably
about page 72, that talks about accepting online input.

Task: Make an online Mad Lib story generator.

As always, your program must be properly linked to the student projects
page, and the displayed webpage must show your name.

Strongly Suggested but not Required:

Put your program in this order: (1) /usr/bin/perl line, (2) olin subrou-
tine, (3) all of your olin subroutine calls, (4) any decisions or calculations,
(5) exactly one mondo print statement that prints everything needed, from
content-type through the end.

Requirements:

(a) Your program must display and accept three or more input fields. Each
must have a suitable description and a reasonable (non-blank) default value.

The first time your program runs, it must use your default values to con-
struct the story.

(b) Your program must have a submit button. When the submit button
is pressed, the screen should be redrawn. The input values should still be
as entered. A story must be presented that uses the contents of the input
fields.

(c) We provide the following subroutine to make this easier.

CHAPTER 8. ACTIVITIES ASSIGNED 68

You can place a copy of this subroutine at or near the beginning or end
of every program you write that requires online inputs. You are welcome
to use copy-paste to insert it into your program, but verify that it copied
correctly, especially the quote marks. Look under “olin” in the index of the
textbook for an explanation of this subroutine.

Since you will use this on several assignments, it might be worth your time
to clean up the indenting errors that often come with cut and paste.

The olin Subroutine:

sub olin { my ($name, $res) = @_;

if ($_olin eq "") { $_olin = "&" . <STDIN> }

if (@_ == 0) { return $_olin }

if ($_olin =~ /&$name=([^&]*)/) {

$res = $1; $res =~ s/[+]/ /g;

$res =~ s/%(..)/pack(’c’,hex($1))/ge }

return $res }

Using olin:

Include the olin subroutine in your program. It can be anywhere in your
program, top or bottom or in between. Then include one or more calls to
olin as shown here.

You normally call olin with two parameters, like this:

$x = olin ("name", "default");

Notice that chomp is not needed and is not used with olin. Chomp is used
with STDIN from the keyboard.

In this case, olin searches the inputs that were sent by the form on your
webpage, and returns the value of the first field whose name is “name.” If
there is no such field, olin returns the value you provided as “default.”

You can call olin with one parameter, like this:

$x = olin ("name");

In this case, if there is no matching field, olin returns the “undefined” value.
This is probably not a good idea.

You can call olin with no parameters, like this:

$x = olin ();

CHAPTER 8. ACTIVITIES ASSIGNED 69

In this case, olin returns the entire input string that was sent by the browser,
with & added to the front. It can be very interesting to see what that input
string really looks like.

CHAPTER 8. ACTIVITIES ASSIGNED 70

8.11 oF: Farm 1

• Status: Officially Assigned.
• Discussed: Mon, Feb 10.
• 5pt Due Date: Wed, Feb 12, 13:00
• 4pt Due Date: Fri, Feb 14, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: oF

This is an online task, but you do not need to send me the code that you
write. It just needs to work when I test it online. The general rules in
section 5.1 (page 34) apply.

If you are requesting a regrade, this is the required subject line:
cis101 regrade oF lastname, firstname

There is a chapter in the textbook, probably about chapter 31, probably
about page 163, that talks about loops (repeated actions).

Task: Print pictures of plants. Use a loop.

Requirements:

(a) Include your name in an h1 at the top of the page.

(b) Your program must display and accept a (numeric) input field. Use
autofocus (required!) to place the cursor in that field. Optionally you can
have more fields for more crops. Clear the numeric field between runs. Do
not carry forward the latest entry.

(c) Your program must have a submit button. When the submit button
is pressed, the screen should be redrawn, followed by “n” pictures of your
crop, where “n” is the number that was keyed into the input field.

(d) The display size of your images cannot be bigger than 100 px wide and
100 px tall. You can use width=100 if you want.

(e) Your loop must not exceed some specified limit of iterations. You can
pick your limit between 5 and 10. If the user request is larger than your
limit, you must complain and your loop must use your limit instead.

Suggestions:

(a) Use the olin subroutine provided previously.

(b) Pick something amusing for your crop and for the name of your garden.

CHAPTER 8. ACTIVITIES ASSIGNED 71

8.12 g71: Array 1

• Status: Officially Assigned.
• Discussed: Wed, Feb 12.
• 5pt Due Date: Fri, Feb 14, 13:00
• 4pt Due Date: Wed, Feb 19, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g71

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g71 lastname, firstname is the required subject line.

cis101 g71 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

There is a chapter in the textbook, probably about chapter 37, probably
about page 195, that talks about arrays.

Summary: Use a loop and an array to remember and count names.

Start with an empty array. Prompt for and read in a name. Add the name
to the array. Repeat until your input is blank. See how many names are in
the array. Report that number.

I am grading on: Init, STDIN, Blank, Tally, Indexing, Style.

Init: You must initialize your array to be empty. I will check for that when
you turn it in.

STDIN: You are allowed to have exactly one <STDIN> statement. It will be
inside your main loop.

Blank: Repeat until your input is blank, but do not add that blank line to
the array. When you are done, the size of the array will be equal to the
number of names in the array.

Tally: You are NOT allowed to tally the names as you read them in. You
must use the size of the array to see how many names are in the array. Tally
means something like x=x+1 or x++ as you loop.

Indexing: Do not use indexing. Instead, use push/pop kinds of array ma-
nipulation.

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 72

Style: Approved style (naming, spacing, and indenting) is required for full
credit.

Name Style: Your variable names must represent the thing that is stored in
them. Do not call your variable “tally” if you are using it as a flag. Do not
call your variable “x” if you can think of something more meaningful to call
it, like “name”.

Sample Execution:

1: "Name? " (no \n)

in>"Renae"

2: "Name? " (no \n)

in>"Lamar"

3: "Name? " (no \n)

in>""

4: "There were 2 names."

eof (end of output)

CHAPTER 8. ACTIVITIES ASSIGNED 73

8.13 g72: Roll

• Status: Officially Assigned.
• Discussed: Fri, Feb 14.
• 5pt Due Date: Wed, Feb 19, 13:00
• 4pt Due Date: Fri, Feb 21, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g72

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g72 lastname, firstname is the required subject line.

cis101 g72 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

There is a chapter in the textbook, probably about chapter 37, probably
about page 195, that talks about arrays.

Summary: Add names to an array. Report how many names were added.
Tell whether a specific name is in the list.

Requirements: (you must do it this way). Use push and foreach. Do not
use indexing (like $x[1]). Approved style (spacing and indenting) is required
for full credit.

Suggestions: (you do not have to do it this way). Use a flag or counter to
tell whether you found the student.

For cases that are not covered by these instructions, GradeBot will tell you
what it wants you to say in each case.

Sample Execution:

1: "Who is attending? " (no \n)

in>"Enoch"

2: "Who is attending? " (no \n)

in>"Delano"

3: "Who is attending? " (no \n)

in>""

4: "There are 2 students present."

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 74

5: "Whom do you seek? " (no \n)

in>"Delano"

6: "Delano is present."

eof (end of output)

CHAPTER 8. ACTIVITIES ASSIGNED 75

8.14 oT: LocalTime

• Status: Officially Assigned.
• Discussed: Wed, Feb 19
• 5pt Due Date: Mon, Feb 24, 13:00
• 4pt Due Date: Wed, Feb 26, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: oT

This is an online task, but you do not need to send me the code that you
write. It just needs to work when I test it online. The general rules in
section 5.1 (page 34) apply.

If you are requesting a regrade, this is the required subject line:
cis101 regrade oT lastname, firstname

There is a chapter in the textbook, probably about chapter 41, probably
about page 206, that talks about arrays and localtime.

Task: Create a dynamic webpage that, at a minimum, includes (a) your
name, (b) the current hours:minutes:seconds, (c) the current day, month,
year, with month as a word, not as a number, (d) the current day of the
week as a word (not just a number).

(Note: There is another way to get the date and time. It is pre-formatted
string like Fri Apr 16 12:34:56 2014. This will not be accepted. Use the
array version of localtime.)

As an example, you can look at my oT webpage. You are welcome and
encouraged to decorate your page, but you are not required to do so.

For assistance, you can look up “localtime” in the index of the text book.
Or look up “gmtime” (Greenwich Mean Time). GMT is also called UTC.

You can do a Google search for “perl localtime” on the web.

The following suggestions might be helpful.

($s, $m, $h, $d, $mo, $y, ...) = localtime(time);

$y += 1900; # correct the year

@dow = ("Sun", "Mon", ..., "Sat");

CHAPTER 8. ACTIVITIES ASSIGNED 76

8.15 g34: Celsius

• Status: Officially Assigned.
• Discussed: Mon, Feb 24.
• 5pt Due Date: Wed, Feb 26, 13:00
• 4pt Due Date: Fri, Feb 28, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g34

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g34 lastname, firstname is the required subject line.

cis101 g34 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

There is a chapter in the textbook, probably about chapter 11, probably
about page 80, that talks about calculation.

Task: Convert temperature from Fahrenheit to Celsius. The formula is:
celsius = (fahrenheit - 32) * 5 / 9

Final Exam Style is required. Follow the rules that I require for final exam
programs. Specifically for this assignment I am looking at spacing and
variable names.

Sample Execution:

1: "Enter a temperature in Fahrenheit: " (no \n)

in>"77"

2: "77 in Fahrenheit equals 25 in Celsius."

eof (end of output)

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 77

8.16 g45: Afford

• Status: Officially Assigned.
• Discussed: Wed, Feb 26.
• 5pt Due Date: Fri, Feb 28, 13:00
• 4pt Due Date: Mon, Mar 3, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g45

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g45 lastname, firstname is the required subject line.

cis101 g45 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

Warning: This one is a bit tricky. Read it carefully and think about it
carefully. It sounds easy, but it is actually somewhat difficult.

Objective: Learn how to use if/else skillfully.

Summary: Consider two gifts and the money you have available. Tell
which gifts, if any, to purchase.

Task: You are shopping for wedding gifts for a good friend. They have
registered their wants on a bridal registry. There are two items not yet
purchased. Ask for the price of gift 1. Ask for the price of gift 2. Ask for
the amount of money you have. If you can get both, say so. If you can only
get one, tell the most expensive thing you can afford. If you cannot afford
either, say so.

For cases that are not covered by these instructions, GradeBot will tell you
what it wants you to say in each case.

Sample Execution:

1: "What is the price of item 1? " (no \n)

in>"1"

2: "What is the price of item 2? " (no \n)

in>"2"

3: "How much money do you have? " (no \n)

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 78

in>"3"

4: "Buy both!"

eof (end of output)

CHAPTER 8. ACTIVITIES ASSIGNED 79

8.17 oHL: High Low

• Status: Officially Assigned.
• Discussed: Fri, Feb 28.
• 12pt Due Date: Mon, Mar 3, 13:00
• 10pt Due Date: Wed, Mar 5, 13:00
• 8pt Due Date: Fri, Mar 7, 13:00
• 6pt Due Date: Tue, Apr 8, 23:59
• Grading Label: oHL

This is an online task, but you do not need to send me the code that you
write. It just needs to work when I test it online. The general rules in
section 5.1 (page 34) apply.

If you are requesting a regrade, this is the required subject line:
cis101 regrade oHL lastname, firstname

Summary: Program the high-low guessing game to run online. This requires
a hidden field to hold the number being guessed.

This is a two-class activity, worth double points (10 points) plus bonus points
(two more points) for being early.

This is the kind of thing that would actually be suitable as a final project
for the class, except for the fact that we are doing it as a regular assignment.

I will automatically grade all programs at the 12pt and 10pt due dates. If
you need your program graded after that, you should request it by email.

Requirement: Create a webpage (a) properly linked to the student projects
page.

Requirement: It must include (b) your name, prominently displayed, (c) an
autofocus field which is blank into which a guess is entered, (d) a hidden
field with the number to be guessed, and (e) a submit button. (Not all
browsers require a submit button but some do.)

Requirement: (f) When the program first starts, it must pick a number to
be guessed, which must be between 1 and 100, inclusive. (g) If the guess is
too low, it should say so. (h) If the guess is too high, it should say so. (i) If
the guess is correct, it should say so and immediately (j) pick a new number
to be guessed.

There will be NO loops in this program, and your only STDIN will be part
of olin. (Look in the text book index for “memo to self”.)

CHAPTER 8. ACTIVITIES ASSIGNED 80

Advice: While developing and testing your program, it is convenient to make
the secret number into a regular (text) input field so you can see what is
going on. After you get your program working, change it from a regular
field into a hidden field.

You are welcome to steal the graphics from my own high-low program, or
make your own, or do your program without graphics.

Optional Idea: Count how many guesses were made and make a clever
comment based on the skill or luck of the player.

Reminder: When the answer is guessed, you must immediately pick a new
answer.

CHAPTER 8. ACTIVITIES ASSIGNED 81

8.18 oD2: Multi Dice

• Status: Officially Assigned.
• Discussed: Wed, Mar 5
• 5pt Due Date: Fri, Mar 7, 13:00
• 4pt Due Date: Mon, Mar 10, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: oD2

This is an online task, but you do not need to send me the code that you
write. It just needs to work when I test it online. The general rules in
section 5.1 (page 34) apply.

If you are requesting a regrade, this is the required subject line:
cis101 regrade oD2 lastname, firstname

There is a chapter in the textbook, probably about chapter 31, probably
about page 163, that talks about loops (repeated actions).

Summary: Make a web program that rolls the number of dice selected. Each
die is rolled randomly, independent of the others.

See task oD and task oF for how-to information.

Link to the oD2 link on the student projects page.

Requirements:

(a) Include your name in an h1 at the top of the page.

(b) Your program must display a field and accept a numeric input. Each time
the page is drawn, the blank must be empty and have the cursor (autofocus)
in it. Do not carry forward the latest entry.

(c) Near your input field, you must say what your maximum number of dice
is.

(d) Your program must have a submit button. When the submit button is
pressed, the screen should be redrawn, complete with the blank for numeric
input, followed by “n” pictures of dice, where “n” is the number that was
keyed into the input field.

(e) Your loop must not exceed 100 iterations. You can pick a smaller limit
if you wish, but it must be at least 10. If the user request is larger than
your limit, your loop must use your limit instead.

CHAPTER 8. ACTIVITIES ASSIGNED 82

(f) Each image should have a displayed size that is no larger than 100px
wide and 100px tall. You can use width= and height= if you like, or you
can resize your images.

Recommended but Optional:

(a) Have a title as part of the head of your webpage.

(b) If too many dice are requested, print a suitable warning message.

(c) Instead of normal, six-sided dice you can use something else, but it must
have at least four alternatives from which one is selected, and the image size
must be no larger than 100 by 100.

CHAPTER 8. ACTIVITIES ASSIGNED 83

8.19 oF2: Farm 2

• Status: Officially Assigned.
• Discussed: Wed, Mar 12 and Fri, Mar 14
• 12pt Due Date: Fri, Mar 14, 13:00
• 10pt Due Date: Mon, Mar 17, 13:00
• 8pt Due Date: Wed, Mar 19, 13:00
• 6pt Due Date: Tue, Apr 8, 23:59
• Grading Label: oF2

This is an online task. For this one you also need to send me the code that
you write, and it also needs to work when I test it online. The general rules
in section 5.1 (page 34) apply, including email subject line and program
comment line.

cis101 oF2 lastname, firstname is the required subject line.

cis101 oF2 lastname, firstname is the required comment line.

There is a unit in the textbook, probably unit 8, probably about page 217,
that talks about subroutines.

This is a two-class activity, worth double points (10 points) plus bonus points
(two more points) for being early.

Task: Similar to oF (above) but using subroutines. And multiple crops.
You are planting a farm. Ask for planting directions. Show the results.

Your task includes writing two subroutines: plant is one and harvest is
the other. These subroutines will call olin as needed and do all the printing
required to accomplish their tasks.

I will read your code to verify that you used the proper structure in writing
your program. In your email, include a link to your online program. I will
test it online to see how well it works.

8.19.1 Main Program: Crops

You must have at least four crops, but you can have more if you wish.

The crops do not have to be actual farming crops. They can be something
funny or weird. Pokemon. Soldiers. Books. Whatever.

You must make an array (list) of the crops you are farming. This is the

CHAPTER 8. ACTIVITIES ASSIGNED 84

only place that the literal names of any of your crops may appear in the
program. Everything else must be done using variables.

@crops = (...);

The text strings in @crops must be usable for (a) display labels, for (b)
input names, and for (c) image file names.

Thus, if one of the crops is "tomato" you can display “tomato” as part of the
display label, use name="tomato" in the input field, use olin("tomato") to
retrieve the quantity, and use "tomato.jpg" to show the picture of the
tomato.

Or, more specifically, if $fruit = "tomato" you can display $fruit as
part of the display label, use name="$fruit" in the input field, use
olin($fruit) to retrieve the quantity, and use "$fruit.jpg" to show
the picture of the tomato.

8.19.2 Main Program: Call “plant”

You must use the following foreach loop, or one like it, to display the names
and quantities of the crops.

foreach $crop (@crops) { plant ($crop) }

Then include an appropriate “submit button.”

8.19.3 Subroutine “Plant”

Do not use any global variables.

Write a subroutine named plant that does the following:

Display a blank into which a number can be entered. Use the placeholder
option to show the name of the crop being requested. (The name of the
crop comes from the subroutine’s parameter list.) Do not make the number
“sticky.” Each blank must be empty each time the screen is presented.

8.19.4 Main Program: Harvesting Call

You must use the following foreach loop, or one like it, to display the harvest.

foreach $crop (@crops) { harvest ($crop) }

CHAPTER 8. ACTIVITIES ASSIGNED 85

8.19.5 Subroutine “Harvest”

Do not use any global variables.

Print a line telling what the requested crop and quantity are. (The name of
the crop comes from the subroutine’s parameter list. The quantity comes
from a call to olin.)

After printing it, if the quantity is unreasonably large, complain, and convert
it to a smaller number. Example: if quantity is more than 9, just use 9.

Print a row of that many pictures of that crop. For example:

CHAPTER 8. ACTIVITIES ASSIGNED 86

8.20 g43: Leap Year

• Status: Officially Assigned.
• Discussed: Wed, Mar 19.
• 5pt Due Date: Fri, Mar 21, 13:00
• 4pt Due Date: Mon, Mar 24, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g43

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g43 lastname, firstname is the required subject line.

cis101 g43 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

Task: Tell whether a given year is a leap year or not.

If a year has Feb 29, then it is a leap year. Tell whether a year is leap year
or not. If the year is a multiple of 4, then it is. Unless if it is a multiple of
100; then it is not. Unless if it is a multiple of 400; then it is.

You can do this with a single if statement that uses ands and ors.

You can do this with an if, elsif, else approach.

You are also welcome to use some other approach.

Helpful hint: The remainder operator, also called modulus, is represented
by the percent sign. 11 % 3 means the remainder when eleven is divided
by three, and the answer is two. (Three goes into eleven three times, with
a remainder of two.) See the text book for more information. Look up
“remainder” in the index.

Sample Executions:

GradeBot would have engaged your program in this dialog:

1: "What is the year? " (no \n)

in>"2011"

2: "2011 is not a leap year."

eof (end of output)

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 87

GradeBot would have engaged your program in this dialog:

1: "What is the year? " (no \n)

in>"2012"

2: "2012 is a leap year."

eof (end of output)

CHAPTER 8. ACTIVITIES ASSIGNED 88

8.21 g64: Factors

• Status: Officially Assigned.
• Discussed: Mon, Mar 24.
• 5pt Due Date: Fri, Mar 28, 13:00
• 4pt Due Date: Mon, Mar 31, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g64

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g64 lastname, firstname is the required subject line.

cis101 g64 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

Task: Find the factors of a number.

Read in a number “n”. Print the numbers (integers) from 1 to n, telling
whether each divides into n perfectly. It divides perfectly if there is no
remainder.

Sample Executions:

GradeBot would have engaged your program in this dialog:

note GBot "# debug output lines are permitted"

in> "8"

1: "1 divides into 8 perfectly."

2: "2 divides into 8 perfectly."

3: "3 divides into 8 leaving a remainder of 2."

4: "4 divides into 8 perfectly."

5: "5 divides into 8 leaving a remainder of 3."

6: "6 divides into 8 leaving a remainder of 2."

7: "7 divides into 8 leaving a remainder of 1."

8: "8 divides into 8 perfectly."

eof (end of output)

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 89

8.22 g75: Tally

• Status: Officially Assigned.
• Discussed: Fri, Mar 28.
• 5pt Due Date: Mon, Mar 31, 13:00
• 4pt Due Date: Wed, Apr 2, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: g75

This is a GradeBot task. The general rules and explanations in section 5.3
(page 35) apply, including email subject line and program comment line.

cis101 g75 lastname, firstname is the required subject line.

cis101 g75 lastname, firstname is the required comment line.

Gradebot can be found at http://gradebot.tk/
and at http://gbot.dc.is2.byuh.edu/.

Task: Add a list of numbers.

The numbers are provided as a space-separated string. You can use “split”
to create a list. You can use “foreach” to walk down the list. You can use
“+=” to add each item to a running total.

There are other approaches that could also be successful.

Sample Executions:

GradeBot would have engaged your program in this dialog:

1: "Numbers: " (no \n)

in>"5 3 1 6"

2: "The total is 15."

eof (end of output)

http://gradebot.tk/
http://gbot.dc.is2.byuh.edu/

CHAPTER 8. ACTIVITIES ASSIGNED 90

8.23 oB: Boring

• Status: Officially Assigned.
• Discussed: Mon, Mar 31.
• 5pt Due Date: Wed, Apr 2, 13:00
• 4pt Due Date: Fri, Apr 4, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: oB

Summary: It’s Dinner Time. Ask what is for dinner. If you have had it
before, then it is boring. If not, then it is yummy.

The user input field must be autofocus and big enough to type “spaghetti”
(or bigger).

There must be a submit button.

Suggestions: (you do not have to do it this way). Pass a hidden field
that contains the dinner history. Create this history using a join command.
Parse this history using a split command. Use the history to decide whether
the next meal is boring or not.

CHAPTER 8. ACTIVITIES ASSIGNED 91

8.24 oJS: JavaScript

• Status: Officially Assigned.
• Discussed: Wed, Apr 2.
• 5pt Due Date: Fri, Apr 4, 13:00
• 4pt Due Date: Mon, Apr 7, 13:00
• 3pt Due Date: Tue, Apr 8, 23:59
• Grading Label: oJS

This is an online task, but you do not need to send me the code that you
write. It just needs to work when I test it online. The general rules in
section 5.1 (page 34) apply.

If you are requesting a regrade, this is the required subject line:
cis101 regrade oJS lastname, firstname

Task: Create an html webpage (a) properly linked to the student projects
page. It must include (b) your name, (c) a JavaScript calculator similar to
the one on my demo page, (d) autofocus into the first data field.

HTML: Notice that you will be creating a webpage only, not a CGI program.

Maintain: The demo calculator has two fields (A and B), and buttons for
add, subtract, multiply, and divide. You must keep these fields and
buttons.

Divide: On the demo calculator, the divide button fails when you divide by
zero. You must fix it so it displays a special error message, not just
“Infinity” like JavaScript would normally say.

Beyond: Go beyond the demo example. For five-point credit, you must add
another button, like maybe square root, or a2 + b2, hopefully something
meaningful. For four-point or three-point credit, this is not required.

Chapter 9

Exam Questions

There are 21 exam questions. This chapter talks about each one and helps
you avoid common mistakes.

Contents

9.1 q1: String Basic 93

9.2 q2: Number Basic 94

9.3 q3: Number Story 94

9.4 q4: Number Decision 95

9.5 q5: Number Decision Story 95

9.6 q6: String Decision 96

9.7 q7: String Bracket 96

9.8 q8: Repeat While 97

9.9 q9: Repeat For . 98

9.10 q10: Repeat Last 98

9.11 q11: Repeat Nested 98

9.12 q12: List Basic . 99

9.13 q13: List Loop . 100

9.14 q14: Array Basic 100

9.15 q15: Array Loop 101

9.16 q16: Array Split 101

9.17 q17: Array Join 101

9.18 Subroutine Basics 102

9.19 q18: Subroutine Return 102

9.20 q19: Positional Parameter 103

92

CHAPTER 9. EXAM QUESTIONS 93

9.21 q20: Globals and Locals 103

9.22 q21: Variable Number of Parameters 104

In this chapter, we consider each exam question. We identify the key things
you need to demonstrate. We mention the common mistakes that people
make. Before attempting a problem (either for the first time or a subsequent
time), you might benefit from reviewing the section that talks about that
problem.

GradeBot has some exercises that are similar to the exam questions. They
are listed as “GradeBot Examples”. They might provide useful practice as
you prepare to take an exam.

In the case of GradeBot, only behavior and results are measured. GradeBot
does not examine your code to see how you achieved your result. In the case
of the exam itself, the human grader does review your code to make sure
you achieved your result in the required manner.

9.1 q1: String Basic

GradeBot Examples: g21.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The key things to demonstrate here are:

(a) How to get string input into your program. This is done by reading from
<STDIN> and storing the result in a variable.

Example: $flavor = <STDIN>;

(b) How to remove the newline from the end of the string. This is done by
using the chomp command.

Example: chomp ($flavor);

(a) and (b) are often combined into a single statement.

Example: chomp ($flavor = <STDIN>);

(c) How to compose a printed statement that includes information from your
variables. This is done by using the variable name within another string.

Example: print "I love $flavor ice cream."

CHAPTER 9. EXAM QUESTIONS 94

(d) Do exactly what was requested. If I request specific wording, you must
follow it exactly. If I do not specify something exactly, you are free to do
anything that works.

Example: print "I love $flavor ice cream. "

In this example, there is a space after ice cream. If my specification says
there should be no space, then by putting a space you will lose credit for
your work.

9.2 q2: Number Basic

GradeBot Examples: g30 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

You should already have the skills involved with String Basic.

The key thing to demonstrate here is:

(a) How to use simple arithmetic to calculate an answer.

Example: $x = 2 * $y - 5;

You will be told specifically what to do. For example, read in two numbers,
multiply them together, and then add 5.

Parentheses may be useful in getting formulas to do the right thing.

Note: it is usually not necessary to chomp inputs that are numbers. Perl
will still understand the number fine.

9.3 q3: Number Story

GradeBot Examples: g30 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

You should already have the skills involved with Number Basic.

Story problems are problems where the precise steps are not given to you.
Instead, you must understand the problem and develop your own formula.
Sometimes this is easy. Sometimes this is difficult.

CHAPTER 9. EXAM QUESTIONS 95

The main thing we are measuring is whether you can invent your own for-
mula based on the description of the problem.

Remember to test your program. Make sure your formula gives correct
answers.

9.4 q4: Number Decision

GradeBot Examples: g40 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The emphasis here is on decision. How do you decide what to do? How do
you express your desires?

The key things to demonstrate here are:

(a) How to write an if statement.

(b) How to compare two numbers. This includes:

(b1) Example: ($x < $y) means less than.

(b2) Example: ($x <= $y) means less than or equal to.

(b3) Example: ($x == $y) means equal to.

(b4) Example: ($x > $y) means greater than.

(b5) Example: ($x >= $y) means greater than or equal to.

(b6) Example: ($x != $y) means not equal to.

(c) Near Misses. Things that look right but are wrong.

(c1) Example: ($x = $y) is a frequent typo for equal to, but actually
means “gets a copy of”.

(c2) Example: ($x => $y) is a frequent typo for greater than or equal
to, but means the same thing as comma does when defining an array.

9.5 q5: Number Decision Story

GradeBot Examples: g40 series.

These points are earned during a final exam (or early final) by writing a

CHAPTER 9. EXAM QUESTIONS 96

working and correct program that does what is required.

As with number story, we have a story problem. And a decision will be
involved. You will need to analyze the question and decide how to solve it.

9.6 q6: String Decision

GradeBot Examples: g50 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The emphasis here is on strings and how their decisions differ from numbers.

The key things to demonstrate here are:

(a) How to compare two strings. This includes:

(a1) Example: ($x lt $y) means less than.

(a2) Example: ($x le $y) means less than or equal to.

(a3) Example: ($x eq $y) means equal to.

(a4) Example: ($x gt $y) means greater than.

(a5) Example: ($x ge $y) means greater than or equal to.

(a6) Example: ($x ne $y) means not equal to.

(b) Near Misses. Things that look right but are wrong.

(b1) Example: ($x eg $y) is a frequent typo for eq.

(c) Properly quote your literal strings. (See barewords in the text book.)

(c1) ($x eq "hello") is the right way to quote a string.

(c2) ($x eq hello) is the wrong way to quote a string.

(c3) ($x eq $y) is right because it is a variable, not a literal.

9.7 q7: String Bracket

GradeBot Examples: g50 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

CHAPTER 9. EXAM QUESTIONS 97

The emphasis here is on more complicated decisions, where there are more
than two options.

The key things to demonstrate here are:

(a) How to handle “clarinet through costly”.

(b) How to handle “a-j, k-o, p-z”.

(c) How (and when) to handle all possible capitalizations. What does “dic-
tionary order” mean?

(d) Properly quote your literal strings. (See barewords in the text book.)

(d1) ($x eq "hello") is the right way to quote a string.

(d2) ($x eq hello) is the wrong way to quote a string.

(d3) ($x eq $y) is right because it is a variable, not a literal.

9.8 q8: Repeat While

GradeBot Examples: g60 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Loops are an important tool. Repeat While names a specific instance of
that.

The syntax is while (condition) { block }

In these loops the condition is just like if statements have. Often it is a
comparison like ($x < 100) .

The block is the collection of commands that will be done repeatedly, so
long as the condition is still true.

Common error: make sure the condition will eventually become false. If
your condition checks for $x less than 100, make sure that $x is changing
and will eventually reach 100.

Common error: if the ending condition gets skipped, the loop could run
forever. ($x < 100) is much safer than ($x != 100) .

Common error: confusing the while syntax with the for syntax.

CHAPTER 9. EXAM QUESTIONS 98

9.9 q9: Repeat For

GradeBot Examples: g60 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Loops are an important tool. Repeat For names a specific instance of that.

The syntax is for (init; condition; step) { block }

The init part initializes the variable that controls the loop.

The condition part is just like an if statement or while statement.

The step part is usually something like $x++ that increments the control
variable.

Common error: confusing the while syntax with the for syntax.

9.10 q10: Repeat Last

GradeBot Examples: g60 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Loops are an important tool. Repeat Last names a specific instance of that.

The syntax is while (1) { block } where the block includes something
like this to break out of the loop:

if (condition) { last }

Common error: due to style requirements, last should be on a new line,
properly indented.

9.11 q11: Repeat Nested

GradeBot Examples: g60 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Loops are an important tool. Repeat Nested names a specific instance of

CHAPTER 9. EXAM QUESTIONS 99

that.

What we are looking for here is the ability to run one loop (the inner loop)
inside another loop (the outer loop).

Example: print all possible combinations for a child’s bike lock, where there
are four wheels each ranging from 1 to 6.

9.12 q12: List Basic

GradeBot Examples: g70 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Lists and arrays are the same thing. When we talk about lists, we are not
using indexing. When we talk about arrays, we are using indexing.

You will have to know that shift and unshift affect the front (start) of the
list, and push and pop affect the back (end) of the list.

The key things to demonstrate here are:

(a) An array can be initialized by listing elements in parentheses.

Example: @x = ("cat", "dog", "bird");

(b) An array can be modified.

(b1) using push to add something to the back (end) of a list.

Example: push @x, "hello";

(b2) using pop to remove something from the back (end) of a list.

Example: $x = pop @x;

(b3) using shift to remove something from the front (start) of a list.

Example: $x = shift @x;

(b4) using unshift to add something to the front (start) of a list.

Example: unshift @x, "hello";

CHAPTER 9. EXAM QUESTIONS 100

9.13 q13: List Loop

GradeBot Examples: g70 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The key thing to demonstrate here is how to use a foreach loop.

Example: foreach $book (@books) { print $book }

Example: foreach (@books) { print $_ }

Wrong: foreach @books { print $_ }

9.14 q14: Array Basic

GradeBot Examples: g70 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Lists and arrays are the same thing. When we talk about lists, we are not
using indexing. When we talk about arrays, we are using indexing.

(a) The whole array is named with @ at the front.

(b) Individual slots in the array are named with $ at the front, and [number]

at the back.

(c) The first item in an array is at location zero.

Example: $x = $array[0];

Example: $array[0] = $x;

(d) The second item in an array is at location one.

Example: $x = $array[1];

(e) The last item in an array is at location -1.

Example: $x = $array[-1];

(f) The second to last item in an array is at location -2.

Example: $x = $array[-2];

Ambiguous: @x[1] - Perl accepts it for $x[1] but I do not.

CHAPTER 9. EXAM QUESTIONS 101

9.15 q15: Array Loop

GradeBot Examples: g70 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The key thing to demonstrate here is how to use a for loop.

(a) The size of an array can be found out.

Example: $size = @array;

(b) A for loop can be used to “index” your way through an array.

Okay: for ($i = 0; $i < $size; $i++) { print $array[$i] }

Wrong: for ($i = 0; $i <= $size; $i++) { print $array[$i] }

Okay: for ($i = 0; $i < @array; $i++) { print $array[$i] }

9.16 q16: Array Split

GradeBot Examples: g70 series, specifically g74, g75, g76.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The split command can be used to convert a string into an array.

Example: @x = split ":", "11:53:28";

Common mistake: $x = split ... (because dollar-x should be at-x)

9.17 q17: Array Join

GradeBot Examples: g70 series.

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The join command can be used to convert an array into a string.

Example: $x = join ":", ("11", "53", "28");

Common mistake: @x = join ... (because at-x should be dollar-x)

CHAPTER 9. EXAM QUESTIONS 102

9.18 Subroutine Basics

All subroutine points require you to do the basic elements of each subroutine
correctly.

Subroutines are defined using the following syntax:

sub name { block }

The word sub must be given first. It is not Sub or subroutine or forgotten.

Never use global variables unless they are necessary. That means each vari-
able in a subroutine should be introduced with the word my the first time it
appears, unless you are sure it is supposed to be global.

Exception: @_ in a subroutine is naturally local. You don’t have to my it.

9.19 q18: Subroutine Return

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

(a) To return a single number from a subroutine, you can do it like this.

Example: return 5;

Example: return $x;

Wrong: return (5); - this is an ambiguity error.

(b) To return a string from a subroutine, you can do it like this.

Example: return "this is a string";

Wrong: return ("this is a string"); - ambiguity.

(c) To return an array from a subroutine, you can do it like this.

Example: return (1, 2, 4, 8);

Wrong: return "(1, 2, 4, 8)"; - a string is not an array

Example: return ("this", "is", "a", "list");

Wrong: return (this, is, a, list); - each string should be quoted

Example: return @x;

Wrong: return "@x"; - a string is not an array

CHAPTER 9. EXAM QUESTIONS 103

(d) return and print do different things. Return gives something back to
the caller. Print sends something to the end user.

9.20 q19: Positional Parameter

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

We are testing your ability to retrieve parameters that were passed into a
subroutine.

The arguments to a subroutine arrive in the local variable @_ and can be
retrieved from it.

Positional parameters are always in the same slot of the array. You can get
the third positional parameter by using $_[2] for example.

9.21 q20: Globals and Locals

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

We are testing your ability to maintain privacy on the variables you use in
your subroutine.

In Perl, variables are naturally global. This is now widely recognized to be
a bad thing, but it is too late to change now.

To force variables to be local (which is the opposite of global), you have to
specially mention the word my before the variable the first time it is used.

Example: my $abc; - creates a local variable with $abc as its name.

Example: my ($abc); - creates a local variable with $abc as its name.

Example: my ($abc, $def, $ghi); - creates three local variables named
$abc, $def, $ghi, respectively.

Common Error: my $abc, $def, $ghi; - creates ONE local variable named
$abc, and mentions two global variables named $def and $ghi.

CHAPTER 9. EXAM QUESTIONS 104

9.22 q21: Variable Number of Parameters

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

We are testing your ability to retrieve parameters that were passed into a
subroutine.

The arguments to a subroutine arrive in the local variable @_ and can be
retrieved from it.

A foreach loop is usually used to walk through the list of parameters that
were sent to the subroutine.

Chapter 10

Final Projects

• Status: Officially Assigned.
• Discussed:
• Deadline: Tue, Apr 8, 23:59

10.1 As Stated in the Syllabus

(40) Project Points

10 Project CGI: write a dynamic web page

10 Project Pictures: use img tags

10 Project Multi Input: process multiple inputs

10 Project Hidden Fields: pass state (counter, etc)

The final project is due by 23:59 on Tuesday, the day after the last day of
class. I plan to grade it early on Wednesday unless you have asked me to
grade yours earlier.

Project points are earned for performance on out-of-class work. The project
must be your own work. It should be fun. A game would be ideal. You are
allowed to consult with others including websites but you are not allowed
to cut and paste code written by others. Each online screen must clearly
identify you as the author. It must accept user input. It should utilize
hidden fields (state) that are needed for its operation.

Your final project cannot just be something we did in class. The

105

CHAPTER 10. FINAL PROJECTS 106

in-class activities are good examples, and teach good principles, but they
do not demonstrate understanding or creativity. If your project is based
on something we did in class, it must go beyond it in some substantial and
significant way.

http://dc.is2.byuh.edu/cis101.2141/ is the place to link your project.
It is the Student Projects page for this class. Link it to the “proj” slot.

10.2 Additional Details

Doing a project is a great way for you to become empowered. Our nominal
goal is that each student be able to build something fun and useful. The
real goal is to enrich the student by giving them the ability to create the
programs they want or need without always relying on others.

Final projects must be different from things we did in class. They can
be similar, but should have at least a few fundamental improvements or
changes. Simply using a different picture or different words is not enough.
It must have different logic.

How to Submit It

Final projects must be linked to my student projects page, proj column,
which links to your /proj/ directory.

I will automatically check for all projects soon after the deadline, so you do
not need to tell me that you are doing a project or not.

However, if you want me to review and possibly grade your final project
early, you can send me an email. Use the following subject line, or something
very close to it.

Subject Line: cis101 final project, lastname, firstname

It will speed things up for both of us if you could please include a clickable
link to your project right in your email. It is likely to get you a faster
response.

http://dc.is2.byuh.edu/cis101.2141/

CHAPTER 10. FINAL PROJECTS 107

Size

What is the right size for a project at this point in your skills development?
This unit contains a few pre-defined projects that could be appropriate for
demonstrating and improving your programming skills. They are given as
examples. They have served in the past as actual assignments.

Invent a Project

Doing pre-defined projects is often boring and can lead to some inappropri-
ate sharing of code. This does not enhance learning. So instead here is a
list of requirements that your project should satisfy.

Online: For any credit at all, your program must run online as a web
application. Anyone in the world should be able to run your program. This
part is absolutely required.

Authorship: The code comments and the program output (webpages)
should clearly identify you as the author and owner of the program.

Creative: Do something creative and unique. If it looks like the project
your neighbor already turned in, it might not qualify. If it is too similar to
something we did in class, it would not qualify.

Fun: Your program should be fun. A game would be ideal. Fun is a
subjective judgment, so we will trust you on this. If you think it is fun, we
will agree that it is fun.

Images: For maximum credit, your program must appropriately use pic-
tures, typically by way of an HTML statement. Ideally the pictures
would change depending, for example, on the progress of the game.

Multi Input: For maximum credit, your program must accept multiple
inputs, for example buttons or text fields, to allow the user to interact with
it. Hidden fields count as inputs. All your submit buttons except the first
count as inputs if they each do something different. Your first submit button
does not count.

State: For maximum credit, your program must have some sort of mean-
ingful state that it carries forward. Some or all of the state must be carried
in hidden fields that are actually important to your program’s operation. It
could be a counter or a running total or anything else that is “state.” And

CHAPTER 10. FINAL PROJECTS 108

hidden fields count towards the multiple input requirement.

Appendix A

Spelling

I offer extra credit for reports of spelling and grammar errors in my for-
mal communications, by which I mean written materials like syllabi, study
guides, and text books as well as current portions of webpages. This is very
helpful to me in correcting spelling mistakes. And it sometimes gets my
students to read my materials carefully.

This has gotten to be sort of a game at times, which makes it fun. We
can get into Grammar Nazi mode and be picky, picky, picky. Students will
cut and paste my words into a document and then run a spelling checker
or grammar checker. Or they will directly open the PDF in a spelling or
grammar checker.

You are welcome to do this, but you should be aware that spelling and
grammar checkers work by a simplified set of rules compared to real life. If
there are two spellings for a word, the spelling checker will commonly only
accept one and will reject the other. This does not make the other wrong.

The truth about English, and probably all languages, is that language
changes over time. New words are created. New spellings are accepted.
New grammar happens. And old grammar is resurrected.

I generally follow the accepted practices as shown in style guides such as the
Chicago Manual of Style. But I take exception to certain things like those
that are noted below. For things that I have considered and listed below,
even though they may show up with a checker, I do not consider them to
be incorrect.

My rules are (a) is it commonly done? (b) is it ambiguous? (c) is it pretty?

109

APPENDIX A. SPELLING 110

These are the same rules used by grammarians, but our decisions in any
given case may be different.

Here is my list.

themself - Modern usage has tended away from gender-specific words like
himself in favor of gender-neutral words. I have migrated from him and her
to “singular” them as my solution of choice to the gender-neutral dictates
of modern political correctness. Some dictionaries do not recognize themself
as a word, and instead suggest themselves. For plural them, this would be
correct, but for singular them, themself is correct and is documented to have
been used as far back in time as the 1400s.

vs - Should it have a dot? The usage argument is that in British writing,
abbreviations are dotted when the final letters have been dropped, but not
when the intermediate letters have been dropped. Versus removes interme-
diate letters. American usage may differ. I do not put a dot after it. I don’t
like how it looks with a dot. It is a conscious decision, not an error.

zeros - versus zeroes: Both are considered correct. Google says that zeros
is more commonly used.

Ambiguous Plurals - The plural of 15 is 15s, not 15’s. Using an apostrophe
generally indicates possession, but people do commonly (and incorrectly) use
an apostrophe for plurals when without it the meaning seems less clear. My
choice when making a plural that would look ambiguous is to quote the
string being pluralized. So, for me, the plural of (a) is (“a”s) rather than
(a’s) or (as).

Ambiguous Quoted Punctuation - When should punctuation that is not
part of a quote be moved inside the quote marks? Typesetters tradition-
ally float a period (full stop) inside a trailing quote mark because it looks
better that way. In computing, quote marks typically delimit strings that
have special meaning, and putting punctuation inside the marks changes the
meaning of the string. I usually float punctuation if it does not change the
meaning of the thing quoted. Otherwise not.

Series Comma - Some people write a list of three things as (a, b and c),
but others write it as (a, b, and c). I write it the second way. This is not an
error. Both usages are correct, but I find the first usage to be ambiguous,
so I almost always use the second form.

Index

cis101.2141, 53

Afford, 77
Array 1, 71

Before After, 62
Birthday, 64
Boring, 90

Celsius, 76
cM, 61
command-line rules, 35

daily update, 28
Dice, 59

Email rules, 37

Factors, 88
Farm 1, 70
Farm 2, 83
First Webpage, 53

g21, 56
g31, 62
g34, 76
g41, 63
g42, 64
g43, 86
g45, 77
g51, 66

g64, 88
g71, 71
g72, 73
g75, 89
GradeBot rules, 35

Hi Fred, 56
High Low, 79

JavaScript, 91

Leap Year, 86
LocalTime, 75

Mad Lib, 61, 67
Multi Dice, 81

Numeric Decision, 63

o1, 53
oB, 90
oD, 59
oD2, 81
oF, 70
oF2, 83
oHL, 79
oJS, 91
olin subroutine, 68
oM, 67
online rules, 34
oR, 57

111

INDEX 112

oT, 75

Phone Book, 66
project, 105

Random Number, 57
rich text, 36, 38

Roll, 73

style, 45

Syllabus, 3

Tally, 89

	Syllabus
	Calendar
	Problem Solving
	DCQuiz: My Learning Management System
	Activities General Information
	GradeBot
	Programming Style
	Activities Assigned
	Exam Questions
	Final Projects
	Spelling
	Index

