
CIS 101 Study Guide

Summer B, 2012

Don Colton
Brigham Young University–Hawaii

July 14, 2012

1

This is a study guide for the CIS 101 class, Introduction to Programming,
taught by Don Colton, Summer B, 2012.

It is a companion to the text book for the class, Introduction to Program-
ming Using Perl and CGI, Third Edition, by Don Colton.

The text book is available here, in PDF form, free.

http://ipup.doncolton.com/

The text book provides explanations and understanding about the content
of the course.

This study guide is focused directly on the grading of the course, as taught
by Don Colton.

http://ipup.doncolton.com/

Contents

1 How Points Are Earned 3

2 1B: String Basic 4

3 2B: Number Basic 6

4 2S: Number Story 7

5 Style Requirements 8

6 4D: Number Decision 12

7 4S: Number Decision Story 13

8 5D: String Decision 14

9 5B: String Bracket 15

10 6W: Repeat While 16

11 6F: Repeat For 17

12 6L: Repeat Last 18

13 6N: Repeat Nested 19

2

CONTENTS 3

14 7B: List Basic 20

15 7L: List Loop 21

16 8B: Array Basic 22

17 8L: Array Loop 23

18 8S: Array Split 24

19 8J: Array Join 25

20 Subroutine Basics 26

21 9R: Subroutine Return 27

22 9P: Positional Parameter 28

23 9G: Globals and Locals 29

24 9V: Variable Number of Parameters 30

25 Final Projects 31

Chapter 1

How Points Are Earned

Your final grade is based on the number of points you earn. The exact
details are in the syllabus.

Effort: About 50% of the points you can earn are for effort, even if you are
unable to perform well after putting in the effort.

Effort includes studying and doing certain in-class activities. For study we
ask you to certify that you studied a certain amount of time. For in-class
activities, we will demonstrate a certain programming technique and ask you
to follow along. Normally this means that you are typing something that is
currently projected on the screen at the front of the class room. We have
you type it so it will pass through your mind at least once (grin), and so
you can have the experience of solving the typing mistakes that are almost
inevitable.

Performance: About 50% of the points you can earn are for performance,
even if it just comes naturally to you with no effort.

Performance includes correctly answering questions on exams. It also in-
cludes doing a final project.

The remainder of this study guide looks at each of the performance points
and gives you the information we think you might need to master each skill.

4

Chapter 2

1B: String Basic

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The key things to demonstrate here are:

(a) How to get string input into your program. This is done by reading from
<STDIN> and storing the result in a variable.

Example: $flavor = <STDIN>;

(b) How to remove the newline from the end of the string. This is done by
using the chomp command.

Example: chomp ($flavor);

(a) and (b) are often combined into a single statement.

Example: chomp ($flavor = <STDIN>);

(c) How to compose a printed statement that includes information from your
variables. This is done by using the variable name within another string.

Example: print "I love $flavor ice cream."

(d) Do exactly what was requested. If I request specific wording, you must
follow it exactly. If I do not specify something exactly, you are free to do
anything that works.

Example: print "I love $flavor ice cream. "

In this example, there is a space after ice cream. If my specification says
there should be no space, then by putting a space you will lose credit for

5

CHAPTER 2. 1B: STRING BASIC 6

your work.

Chapter 3

2B: Number Basic

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

You should already have the skills involved with String Basic.

The key thing to demonstrate here is:

(a) How to use simple arithmetic to calculate an answer.

Example: $x = 2 * $y - 5;

You will be told specifically what to do. For example, read in two numbers,
multiply them together, and then add 5.

Parentheses may be useful in getting formulas to do the right thing.

Note: it is usually not necessary to chomp inputs that are numbers. Perl
will still understand the number fine.

7

Chapter 4

2S: Number Story

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

You should already have the skills involved with Number Basic.

Story problems are problems where the precise steps are not given to you.
Instead, you must understand the problem and develop your own formula.
Sometimes this is easy. Sometimes this is difficult.

The main thing we are measuring is whether you can invent your own for-
mula based on the description of the problem.

Remember to test your program. Make sure your formula gives correct
answers.

8

Chapter 5

Style Requirements

As your programs become more complex, style becomes important.

In real life programming situations, it is common for work groups to adopt
style rules. By using the same style, programs tend to be easier to read and
understand. For most of the problems on each test, specific style is required.

Because style is a huge aid to making your program easier to read, I have
developed the following style rules.

Spacing

The first style rule I require is spacing. I am very picky. You must put one
space between tokens. There are a few exceptions.

Example: (3+5) is bad.

Example: (3 + 5) is good.

This requires that you know what a token is. I cover this in the text book.

Mistake: adding spaces inside a quoted string changes its meaning. A quoted
string is by itself a single token. I require spaces between tokens, not within
tokens.

Exception: You may omit the space before a semi-colon.

Example: $x = (3 + 5); is okay.

Exception: You may omit the space between a variable and a unary operator.

9

CHAPTER 5. STYLE REQUIREMENTS 10

Example: $x++; is okay.

Example: $x = -$y; is okay.

Use the Values Specified

Often a problem will specify certain numbers or strings that define how the
program should run. If possible, use those exact same values in writing your
program. If not, include a comment that has the exact value.

Example: Print “Hello, World!”

Good: print "Hello, World!"

Okay: print "Hello, World!\n"

Bad: print "hello, world!"

Bad: print " Hello, World! "

Example: Print the numbers from 1 to 100.

Good: for ($i = 1; $i <= 100; $i++) { print $i }

Bad: for ($i = 1; $i < 101; $i++) { print $i }

If you cannot use the exact value specified in your program itself, then use
the exact value in a comment nearby.

Example: If the last name is in the A-G range, do something.

Good: if (uc $ln lt "H") { # A-G

Mathematical Parentheses

In the form $x = (something); there is a confusing ambiguity. I do not
allow it because it is confusingly ambiguous.

The problem is ambiguity. It has two possible meanings. Perl probably
handles it okay, but I still do not accept it.

Parentheses can be used in a mathematical expression to force a certain
order of operations.

Example: $x = (3 + 2) * 5; # this is okay

Example: $x = ((3 + 2) * 5); # this is not okay

CHAPTER 5. STYLE REQUIREMENTS 11

Parentheses are also used in defining arrays.

Example: @x = (3); # this is okay

Here is the ambiguity that we wish to avoid:

Example: $x = (3); # $x will be 3

Example: $x = @x = (3); # $x will be 1

One Statement Per Line

Each statement should be on its own line.

In real life, statements are often combined onto one line if they are closely
related. This is not real life. For exams, it is easier if I have a simple rule
and stick with it.

Start a new line after each opening { or semi-colon.

Exception: The for loop uses two semi-colons to separate its control struc-
ture (init; condition; step). You should not normally start a new line after
those semi-colons.

Exception: A relevant comment can be placed after a semi-colon.

Indenting

Indent is the number of blanks at the start of each line.

The main program should not be indented. There should be no spaces in
front of the actual code.

Blocks are created by putting { before and } after some lines of code. This
happens with decisions, loops, and subroutines.

Within the block, I require indenting to be increased by two.

Warning: because crazy indenting makes programs substantially harder to
read, I have become very picky about this.

Warning: If you write your program using an editor like notepad++, and
then cut-and-paste it to save as your exam answer, the indenting may be
messed up. You should go back through your program and fix any indenting
problems that may have occurred.

CHAPTER 5. STYLE REQUIREMENTS 12

Common Error: using TAB instead of two spaces. I will mark it wrong.

Common Error: using one space instead of two spaces. I will mark it wrong.

Helpful Blank Lines

Blank lines are used to divide a program into natural “paragraphs.” The
lines within each paragraph are closely related to each other, at least as seen
by the programmer.

Rule: Keep things fairly compact. Use blank lines and comments to help
visually identify groups of related lines. Do not use an excessive number of
blank lines.

Helpful Names

Variables and subroutines are named. The computer does not care how
meaningful the names are that you use, but programmers will care. I will
care. The names should be helpful. They should bear some obvious rela-
tionship to the thing they represent.

Long descriptive names can be abbreviated and explained when used.

Example: $eoy = 1; # eoy means end of year, 1 means true.

Names like $x and $y should be avoided because they normally don’t convey
meaning. Like “he”, “she”, and “it” in English, their meaning is short-range
and would need to be clear by the immediately surrounding context.

Chapter 6

4D: Number Decision

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The emphasis here is on decision. How do you decide what to do? How do
you express your desires?

The key things to demonstrate here are:

(a) How to write an if statement.

(b) How to compare two numbers. This includes:

(b1) Example: ($x < $y) means less than.

(b2) Example: ($x <= $y) means less than or equal to.

(b3) Example: ($x == $y) means equal to.

(b4) Example: ($x > $y) means greater than.

(b5) Example: ($x >= $y) means greater than or equal to.

(b6) Example: ($x != $y) means not equal to.

(c) Near Misses. Things that look right but are wrong.

(c1) Example: ($x = $y) is a frequent typo for equal to, but actually
means “gets a copy of”.

(c2) Example: ($x => $y) is a frequent typo for greater than or equal
to, but means the same thing as comma does when defining an array.

13

Chapter 7

4S: Number Decision Story

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

As with number story, we have a story problem. And a decision will be
involved. You will need to analyze the question and decide how to solve it.

14

Chapter 8

5D: String Decision

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The emphasis here is on strings and how their decisions differ from numbers.

The key things to demonstrate here are:

(a) How to compare two strings. This includes:

(a1) Example: ($x lt $y) means less than.

(a2) Example: ($x le $y) means less than or equal to.

(a3) Example: ($x eq $y) means equal to.

(a4) Example: ($x gt $y) means greater than.

(a5) Example: ($x ge $y) means greater than or equal to.

(a6) Example: ($x ne $y) means not equal to.

(b) Near Misses. Things that look right but are wrong.

(b1) Example: ($x eg $y) is a frequent typo for eq.

15

Chapter 9

5B: String Bracket

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The emphasis here is on more complicated decisions, where there are more
than two options.

The key things to demonstrate here are:

(a) How to handle “clarinet through costly”.

(b) How to handle “a-j, k-o, p-z”.

(c) How to handle all possible capitalizations.

16

Chapter 10

6W: Repeat While

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Loops are an important tool. Repeat While names a specific instance of
that.

The syntax is while (condition) { block }

In these loops the condition is just like if statements have. Often it is a
comparision like ($x < 100) .

The block is the collection of commands that will be done repeatedly, so
long as the condition is still true.

Common error: make sure the condition will eventually become false. If
your condition checks for $x less than 100, make sure that $x is changing
and will eventually reach 100.

Common error: if the ending condition gets skipped, the loop could run
forever. ($x < 100) is much safer than ($x != 100) .

Common error: confusing the while syntax with the for syntax.

17

Chapter 11

6F: Repeat For

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Loops are an important tool. Repeat For names a specific instance of that.

The syntax is for (init; condition; step) { block }

The init part initializes the variable that controls the loop.

The condition part is just like a if statement or while statement.

The step part is usually something like $x++ that increments the control
variable.

Common error: confusing the while syntax with the for syntax.

18

Chapter 12

6L: Repeat Last

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Loops are an important tool. Repeat Last names a specific instance of that.

The syntax is while (1) { block } where the block includes something
like this to break out of the loop:

if (condition) { last }

Common error: due to style requirements, last should be on a new line,
properly indented.

19

Chapter 13

6N: Repeat Nested

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Loops are an important tool. Repeat Nested names a specific instance of
that.

What we are looking for here is the ability to run one loop (the inner loop)
inside another loop (the outer loop).

Example: print all possible combinations for a child’s bike lock, where there
are four wheels each ranging from 1 to 6.

20

Chapter 14

7B: List Basic

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Lists and arrays are the same thing. When we talk about lists, we are not
using indexing. When we talk about arrays, we are using indexing.

The key things to demonstrate here are:

(a) An array can be initialized by listing elements in parentheses.

Example: @x = ("cat", "dog", "bird");

(b) An array can be modified.

(b1) using push to add something to the end of a list.

Example: push @x, "hello";

(b2) using pop to remove something from the end of a list.

Example: $x = pop @x;

(b3) using shift to remove something from the front of a list.

Example: $x = shift @x;

(b4) using unshift to add something to the end of a list.

Example: unshift @x, "hello";

21

Chapter 15

7L: List Loop

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The key thing to demonstrate here is how to use a foreach loop.

Example: foreach $book (@books) { print $book }

Example: foreach (@books) { print $_ }

Wrong: foreach @books { print $_ }

22

Chapter 16

8B: Array Basic

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

Lists and arrays are the same thing. When we talk about lists, we are not
using indexing. When we talk about arrays, we are using indexing.

(a) The whole array is named with @ at the front.

(b) Individual slots in the array are named with $ at the front, and [number]

at the back.

(c) The first item in an array is at location zero.

Example: $x = $array[0];

Example: $array[0] = $x;

(d) The second item in an array is at location one.

Example: $x = $array[1];

(e) The last item in an array is at location -1.

Example: $x = $array[-1];

(f) The second to last item in an array is at location -2.

Example: $x = $array[-2];

Ambiguous: @x[1] - Perl accepts it for $x[1] but I do not.

23

Chapter 17

8L: Array Loop

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The key thing to demonstrate here is how to use a for loop.

(a) The size of an array can be found out.

Example: $size = @array;

(b) A for loop can be used to “index” your way through an array.

Okay: for ($i = 0; $i < $size; $i++) { print $array[$i] }

Wrong: for ($i = 0; $i <= $size; $i++) { print $array[$i] }

Okay: for ($i = 0; $i < @array; $i++) { print $array[$i] }

24

Chapter 18

8S: Array Split

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The split command can be used to convert a string into an array.

Example: @x = split ":", "11:53:28";

Common mistake: $x = split ... (because dollar-x should be at-x)

25

Chapter 19

8J: Array Join

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

The join command can be used to convert an array into a string.

Example: $x = join ":", ("11", "53", "28");

Common mistake: @x = join ... (because at-x should be dollar-x)

26

Chapter 20

Subroutine Basics

All subroutine points require you to do the basic elements of each subroutine
correctly.

Subroutines are defined using the following syntax:

sub name { block }

The word sub must be given first. It is not Sub or subroutine or forgotten.

Never use global variables unless they are necessary. That means each vari-
able in a subroutine should be introduced with the word my the first time it
appears, unless you are sure it is supposed to be global.

Exception: @_ in a subroutine is naturally local. You don’t have to my it.

27

Chapter 21

9R: Subroutine Return

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

(a) To return a single number from a subroutine, you can do it like this.

Example: return 5;

Example: return $x;

Wrong: return (5); - this is an ambiguity error.

(b) To return a string from a subroutine, you can do it like this.

Example: return "this is a string";

Wrong: return ("this is a string"); - ambiguity.

(c) To return an array from a subroutine, you can do it like this.

Example: return (1, 2, 4, 8);

Wrong: return "(1, 2, 4, 8)"; - a string is not an array

Example: return ("this", "is", "a", "list");

Wrong: return (this, is, a, list); - each string should be quoted

Example: return @x;

Wrong: return "@x"; - a string is not an array

(d) return and print do different things. Return gives something back to
the caller. Print sends something to the end user.

28

Chapter 22

9P: Positional Parameter

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

We are testing your ability to retrieve parameters that were passed into a
subroutine.

The arguments to a subroutine arrive in the local variable @_ and can be
retrieved from it.

Positional parameters are always in the same slot of the array. You can get
the third positional parameter by using $_[2] for example.

29

Chapter 23

9G: Globals and Locals

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

We are testing your ability to maintain privacy on the variables you use in
your subroutine.

In Perl, variables are naturally global. This is now widely recognized to be
a bad thing, but it is too late to change now.

To force variables to be local (which is the opposite of global), you have to
specially mention the word my before the variable the first time it is used.

Example: my $abc; - creates a local variable named $abc.

Example: my ($abc); - creates a local variable named $abc.

Example: my ($abc, $def, $ghi); - creates three local variables named
$abc, $def, $ghi, respectively.

Common Error: my $abc, $def, $ghi; - creates ONE local variable named
$abc, and mentions two global variables named $def and $ghi.

30

Chapter 24

9V: Variable Number of
Parameters

These points are earned during a final exam (or early final) by writing a
working and correct program that does what is required.

We are testing your ability to retrieve parameters that were passed into a
subroutine.

The arguments to a subroutine arrive in the local variable @_ and can be
retrieved from it.

A foreach loop is usually used to walk through the list of parameters that
were sent to the subroutine.

31

Chapter 25

Final Projects

These points are earned outside of class by doing a final project.

Doing a project is a great way to become empowered. Our nominal goal is
that each student be able to build something fun and useful. The real goal
is to enrich the student by giving them the ability to create the programs
they need without always relying on others.

Final projects must be different from things we did in class. They can
be similar, but should have at least a few fundamental improvements or
changes. Simply using a different picture or different words is not enough.
It must have different logic.

Size

What is the right size for a project at this point in your skills development?
This unit contains a few pre-defined projects that could be appropriate for
demonstrating and improving your programming skills. They are given as
examples. They have served in the past as actual assignments.

Trust

Because out-of-classroom projects by their nature are done without supervi-
sion, there is some risk that students will get inappropriate help. To guard
against this, project points can only be earned by students who have already

32

CHAPTER 25. FINAL PROJECTS 33

performed sufficiently well on the in-class exams and activities.

Normally this means you must have already earned a B- through your other
work.

You can do the project even before you have earned a B- but it will not be
counted until you earn a B-.

Invent a Project

Doing pre-defined projects can be boring and can lead to some inappropriate
sharing of code. This does not enhance learning. So instead here is a list of
requirements that your project should satisfy.

Online: It must run online as a web application. Anyone in the world
should be able to run your program.

Authorship: The code comments and the program output should clearly
identify you as the author and owner of the program.

Creative: Do something creative and unique. If it looks like the project
your neighbor already turned in, it might not qualify. If it is too similar to
something we did in class, it would not qualify.

Fun: Your program should be fun. A game would be ideal. Fun is a
subjective judgment, so we will trust you on this. If you think it is fun, we
will agree that it is fun.

Images: The program should appropriately use pictures, typically by way
of an HTML statement. Ideally the pictures would change depending,
for example, on the progress of the game.

Input: Your program must accept multiple inputs, for example buttons
or text fields, to allow the user to interact with it. Hidden fields count as
inputs.

State: Your program must have some sort of meaningful state that it carries
forward. Some or all of the state must be carried in hidden fields that are
actually important to your program’s operation.

	How Points Are Earned
	1B: String Basic
	2B: Number Basic
	2S: Number Story
	Style Requirements
	4D: Number Decision
	4S: Number Decision Story
	5D: String Decision
	5B: String Bracket
	6W: Repeat While
	6F: Repeat For
	6L: Repeat Last
	6N: Repeat Nested
	7B: List Basic
	7L: List Loop
	8B: Array Basic
	8L: Array Loop
	8S: Array Split
	8J: Array Join
	Subroutine Basics
	9R: Subroutine Return
	9P: Positional Parameter
	9G: Globals and Locals
	9V: Variable Number of Parameters
	Final Projects

