
Hangman Project

Professor Don Colton

Brigham Young University Hawaii

1 Overview

We will create a working online hangman game. You
can see a description on Wikipedia:

http://en.wikipedia.org/wiki/Hangman_(game)

An example game, written by Don Colton, can be
played here:

http://dc.is2.byuh.edu/hangman/

2 Requirements

The resulting game should be fun to play. This as-
pect is not explicitly graded, but it should be kept
in mind as you design, develop, and implement your
game.

Your program must be written in Perl.

Your program must run as a CGI program on the
web.

The URL for your program may be designated for
you. If you, you must make your program work from
that URL.

Every time your program runs, it should create a
web page that clearly identifies you as the author
and Hangman as the game.

When your program is first started, and after each
game ends, it should attempt to start a new game.
The player should have at least these two options:
(1) let the program pick a word to be guessed, and
(2) let the user enter his own word to be guessed.

When the user lets the program pick a word, the
word should be randomly selected from a list within
your program. The list must have at least ten dif-
ferent words to choose from.

When the game is under way, your program must
display a graphic illustration (for example, a hang-
man’s scaffold) showing how many times the player
has made a mistake. The game starts with zero mis-
takes. When six mistakes have happened, the game
is lost.

When the game is under way, your program must
also display letters and dashes to indicate the letters
that have been correctly guessed and the letters that
have not yet been guessed.

When the game is under way, your program must
also display the letters that were incorrectly guessed,
in the order those guesses were made.

When six mistakes have been made, the game is lost,
and your program must announce that the game is
lost and reveal the hidden word. It must also at-
tempt to start a new game as indicated above.

When all letters have been correctly guessed, your
program must announce that the game is won. It
must also attempt to start a new game as indicated
above.

3 Suggestions

It is recommended but not required that there be
a way for the player to end the game early. If the
player takes this option, the hidden word whould be
revealed and your program must attempt to start a
new game.

It is recommended but not required that your pro-
gram allow spaces to appear in the hidden word, thus
making it a hidden phrase.

It is recommended but not required that your pro-
gram have a list of words that are challenging to
guess.

It is recommended but not required that your pro-
gram allow the player to enter more than one letter

1



A.2 Projects / Hangman Introduction to Programming

at once. For example, the player could be allowed
to enter the entire word or phrase.

It is recommended but not required that your pro-
gram ignore guesses that have already been con-
sidered. Thus, if the player already guessed “e”,
whether it was right or not, if they guess “e” again
it should be ignored.

You may want to provide hints in the form of a list
of the most common letters, maybe in order of pop-
ularity.

You may want to provide an alphabetical list of let-
ters that have not already been guesses.

You may want to provide random taunts, telling the
player how close they are to losing, or making fun
of wrong choices. Similarly you may want to pro-
vide random statements of encouragement, telling
the player how wise and intelligent they are for the
good choices they have made.

You may want to use another graphic instead of a
hangman’s gallows. Perhaps apples on a tree, as
mentioned in Wikipedia. Perhaps time through an
hour glass. Perhaps a fuse on a bomb. Think of
something unique and fun.

4 Design

Your program must comply with indentation and
other style requirements specified by the instructor.

The standard for indentation is that each level of
nesting will have two or more spaces at the front of
each line, and that the indentation will be uniform
for all lines at that level of nesting.

Subroutines are to be placed after the main program.
They should not be nested inside the main program
or inside each other.

“use strict” must be invoked to eliminate acciden-
tally global variables.

There should be a subroutine that will return a word
to be guessed. This subroutine should be called
when the user requests the program to provide such
a word.

There should be a subroutine that will accept as
input the target word and the list of letters that
have been tried. It should return letters and dashes
to indicate what the user should be shown.

There should be a subroutine that will accept as
input the target word and the list of letters that
have been tried. It should return a list of wrong
letters, in the proper order.

There should be a subroutine that will accept input
of your choice and will return a count of the number
of errors that have been made.

All “state” information needed to continue the game
should be included in the web page that your pro-
gram puts up. Thus, many people should be able
to simultaneously play your game without interfer-
ing with each other. It is not required that it be
encrypted, but it must be hidden to the extent that
a casual player cannot see it. If “view page source”
reveals it, that is not a problem.

Don Colton Page 2 January 15, 2009


