
A Simple Shopping Cart using CGI

Professor Don Colton, BYU Hawaii

March 5, 2004

In this section of the course, we learn to use CGI
and Perl to create a simple web-based shopping cart
program. We assume you have written some small
CGI programs already, and are familiar with direc-
tories, permissions, and running from the command
line.

1 Program Overview

Business Purpose: We will create a simple web-based
business to sell a limited variety of products.

Shopping Experience: We desire the customer to
first see a Welcome screen when they visit our web
site. From the Welcome screen, the customer will
enter the store. While in the store, the customer
will select items to add to his shopping cart. Occa-
sionally the customer will check his cart to see what
is in it. Finally, the customer will check out and pay
for his purchase.

1.1 Screens

We visualize the web site as consisting of the follow-
ing screens.

Welcome: This screen will introduce the business
in a friendly manner and provide access to the shop-
ping screen.

Shop: This screen will list the entire product cata-
log, and allow items to be added to the cart.

Cart: This screen will list the contents of the shop-
ping cart, and will allow the customer to remove
items from the cart.

Checkout: This screen will list the contents of the
shopping cart, and give a total price. It will allow
the customer to enter a credit card number.

1.2 Subroutines

We visualize the program as consisting of the follow-
ing subroutines.

Main: Not really a subroutine, reads the CGI in-
put and decides which other subroutines should be
called.

Welcome: Paints the Welcome screen.

Shop: Paints the Shop screen. Handles the adding
of items into the shopping cart.

Cart: Paints the Cart screen. Handles the removal
of items from the shopping cart.

Checkout: Paints the Checkout screen. Calculates
the total price. Handles the entry of the credit card
number.

Init: Initializes the inventory database.

1

Bro Colton CGI Tutorial March 5, 2004

2 Step One

Our first step is to construct a highly simplified ver-
sion of the final program. This will be the skeleton
to which we will later add functionality.

#!/usr/bin/perl -Tw
chomp ($in = <STDIN>);
init();
welcome(); exit;

sub welcome {
print "Content-type: text/html\n\n

debug: $in=($in)
<h1>Welcome</h1>
<form method=post action=’’>
<input type=submit name=go value=Shop>
<input type=submit name=go value=Cart>
<input type=submit name=go value=Checkout>
</form>
"; }
sub shop {}
sub cart {}
sub checkout {}
sub init {}

The first line, (#!/usr/bin/perl -Tw) tells the
computer that this is a perl program, and that (T)
taint checking should be turned on, and that (w)
warning messages should be given in case perl can
tell our program is not correct.

chomp ($in = <STDIN>); reads in the one line of
input that our program will receive. It places it into
the variable $in and removes the trailing newline
character.

init(); will be used later to provide inventory for
sale. You can leave it out until you develop the init
subroutine later, but there is no harm putting it in
now so you don’t forget.

welcome(); exit; calls your subroutine to paint
the welcome screen. This would be the case the first
time the program is run. When the welcome sub-
routine completes its work, we exit directly to stop
the program.

sub welcome { ... } defines welcome to be a sub-
routine consisting of all the activities between the
curly braces. More on that soon.

sub shop {} defines shop to be a subroutine with
no content. Such a subroutine is called a stub.
Later we will add content to it. For now it is just
a blank chapter in the book. The same is true for
cart, checkout, and init.

2.1 Welcome code

The welcome subroutine consists of exactly one
statement. It is a print statement that creates an
entire web page.

Content-type: text/html\n\n is printed first.
This tells the browser that the remaining lines will
be html code. The two newlines are used to create
a blank line between the headers (content type and
other such lines) and the web page.

debug: $in=($in) gives us some visibility into what
is happening. When we run our program on the web,
it shows us the input that our program was working
with. This will prove to be very handy during de-
bugging, but we will remove it before the program
goes into actual use.

<h1>Welcome</h1> provides the cheerful introduc-
tion to our business. In real life we would be a bit
more verbose.

<form method=post action=’’> specifies the start
of the form. post causes our inputs to not be dis-
played on the URL line of the web browser. Action
appears to be blank. It is in fact a relative refer-
ence telling what we should do if this form is used.
What we do is nothing. Nothing other than run this
same program again. If we wanted to run a different
program we would specify it here.

<input type=submit name=go value=Shop> cre-
ates a [Shop] button and provides that go=Shop will
be sent to our program if the customer presses it.
Similarly the links to Cart and Checkout are speci-
fied.

</form> designates the end of the form.

Finally, the print statement ends with "; and the
subroutine ends with }.

2

Bro Colton CGI Tutorial March 5, 2004

3 Command-Line Testing

We have written enough that we can begin testing.
Our programming method is called top-down pro-
gramming using stepwise refinement. By top
down, we mean that we are looking at the big pic-
ture first, the top view as seen by an airplane flying
over the countryside. We identify the major features
(the main program and the main subroutines). We
do not specify too much detail at first to reduce com-
plexity and confusion.

Type emacs ~/public_cgi/mystore to start the
text editor. Key in the program. Save the program.
Rather than fully exit (C-x C-c) just shell out (C-z).
This will allow you to resume your edit (fg) after
each mistake is announced.

Type chmod 711 ~/public_cgi/mystore to set the
proper permissions. This allows your program to be
executed by the web server.

Type ~/public_cgi/mystore to run the program.
You should be presented with a blank line while your
program waits for input. Press enter. You should
receive output like this:

Content-type: text/html

debug: $in=()
<h1>Welcome</h1>
<form method=post action=’’>
<input type=submit name=go value=Shop>
<input type=submit name=go value=Cart>
<input type=submit name=go value=Checkout>
</form>

These are the lines that were specified in the
welcome subroutine. If you receive anything unex-
pected, fix it. The most common problems are these.

Unterminated string. This means that you have
opening quote marks someplace but the closing
quote marks cannot be found. Find the line where
this was reported. The problem is on that line or
above.

(more to be added)

4 Web Testing

It does ver little good to perform web testing until
you know that your program works correctly from
the command line. The error messages on the web
are not very helpful. The error messages on the com-
mand line are much more helpful.

Start your browser and type in the URL for your
program. It should be something like this.

http://cgi.cs.byuh.edu/~aa999/mystore

Of course, replace aa999 with your login name. Re-
place mystore with the name of your program if you
used a different name.

You should see your first screen. It should consist of
the following words.

Welcome
[Shop] [Cart] [Checkout]

View the page source. It should consist of the fol-
lowing words.

debug: $in=()
<h1>Welcome</h1>
<form method=post action=’’>
<input type=submit name=go value=Shop>
<input type=submit name=go value=Cart>
<input type=submit name=go value=Checkout>
</form>

These are the same words you included in your
welcome subroutine shown above.

If you press on any of the buttons, [Shop] for in-
stance, your program will run, but the browser will
think that it crashed because your program did not
create any output.

3

Bro Colton CGI Tutorial March 5, 2004

5 Step Two

We are ready to flesh out the stubs a tiny bit. In
this step, we will create working (but almost empty)
web pages for shop, cart, and checkout. Change
the code for each. Before:

sub cart {}

After:

sub cart {
print "Content-type: text/html\n\n
debug: in=($in)
<h1>Shopping Cart</h1>" }

We have not done much. All we have done is print a
viable web page in each case, and we have included
the debug information we want from the $in vari-
able.

if ($in =~ /go=Shop/) { shop(); exit }
if ($in =~ /go=Cart/) { cart(); exit }
if ($in =~ /go=Checkout/) {
checkout(); exit }

welcome(); exit;

The last line should already be in your program.
The other three activate the subroutines that you
just wrote, but only when the right words appear in
the input string.

Test your revised program. Using your browser,
press each of the buttons on the welcome screen.
Use the back button on your browser to return to
the welcome screen.

6 Step Three: Inventory

Next we will create some inventory to be sold. We
will use a business model for selling fishing supplies.
Our company will be called Fish Bait, Inc. Replace
the init subroutine with the following:

populate the product catalog
sub init {
push @inv, "worms, 100=1.00";
push @inv, "flies, 50=2.00";
push @inv, "squid, small=1.50";
push @inv, "chum, bucket=5.00";
push @inv, "minnow=0.25";
push @inv, "hooks, large=2.75";

}

In this subroutine, we are adding items to an
array named @inv. Each item is specified by
“name=price”. For your own project, you should
think of a different theme (not fish bait) and a list of
appropriate products. You can do something general
like Ebay or a garage sale, or you can do something
focused like cosmetics or car parts. Make sure you
have a call to init in your main program.

We are now ready to write the shop() subroutine.
Change it to say the following.

paint the products screen
sub shop {
print "Content-type: text/html\n\n
debug: in=($in)

<h1>Fish Bait Products</h1>
<form method=post action=’’>
<table><tr><td>Item<td>Price<td>Qty
<td>Buy It\n";
for ($i = 0; $i < @inv; $i++) {
($item, $price) = split /=/, $inv[$i];
print "<tr><td>$item<td>$price";
print "<td><input type=text";
print " name=qty$i value=1>\n";
print "<td><input type=submit";
print " name=add$i value=’add’>\n";

}
print "</table></form>\n"; }

The for loop will walk through the inventory and
produce one line of output (three print statements)
for each product in the inventory.

4

Bro Colton CGI Tutorial March 5, 2004

Test your program. See whether it creates a nice
table of inventory. If you are brave, press one of the
[add] buttons to see what happens. You should end
up back at the welcome screen, but with an interest-
ing input line to ponder.

7 Step Four: The Cart

We can recognize that an [add] button has been
pressed as follows. This line should be inserted in
the main program, somewhere after init and before
welcome.

if ($in =~ /add\d+=add/) { shop(); exit }

Once we get to the shop() subroutine, we must iden-
tify the item and its quantity.

if ($in =~ /add(\d+)=add/) {
$new = $1;
$in =~ /qty$new=(\d+)/;
$qty = $1;
$cart .= " $new.$qty";

}

We are finding the product number ($new) and its
quantity ($qty). We are placing them into the shop-
ping cart ($cart) that we have newly created.

So now we will need a way to carry the shopping
cart from screen to screen. We will do this with a
hidden field:

<input type=hidden name=cart value=’$cart’>

We will put that line right after the <form> line. We
will also need to capture the cart information before
we can add to it.

if ($in =~ /cart=([^&]*)/) {
$cart = $1 } else { $cart = "" }

$cart =~ s/[+]/ /g;
$cart =~ s/%(..)/pack(’C’,hex($1))/eg;

To help us see the effects of this new shopping cart,
we will add another debug line to the shop subrou-
tine.

debug: cart=($cart)

This line goes right after the debug: in line.

If we did everything right (or after we fix everything
that we broke trying to do everything right), our
program should behave as follows. Each time an
[add] button is pressed, the shopping cart should
have more items inside it.

5

