Closed book. No notes. Work strictly from memory. No calculators. Scratch paper okay. You may write on the test.
$1 / 2 \mathrm{p}$. Let L be the language accepted by the regular expression " (a? $\mid \mathrm{bab}$) $\mathrm{a} *+$ ". List the shortest five (or all) strings in L.
$2 / 2 \mathrm{p}$. Let L be the language accepted by the regular expression "bbaab?*". List the shortest five (or all) strings in L.
$3 / 2 \mathrm{p}$. Let L be the language accepted by the regular expression "abaabbaa*". List the shortest five (or all) strings in L.
$4 / 2 \mathrm{p}$. Let L be the language accepted by the regular expression "a?bab*+". List the shortest five (or all) strings in L .
$5 / 2 \mathrm{p}$. Let L be the language accepted by the regular expression "(abbb*bab)+". List the shortest five (or all) strings in L.
$6 / 2 \mathrm{p}$. Let L be the language accepted by the regular expression "b*ba+b*". List the shortest five (or all) strings in L .
$7 / 2 \mathrm{p}$. Let L be the language accepted by the regular expression "(abab?) +ab ". List the shortest five (or all) strings in L.
$8 / 15 \mathrm{p}$. Write this program on a separate sheet of paper. Use one side of one sheet. Label it clearly. Accept two integers, a and b , from the command line (argv). Print their difference (a minus b).
$9 / 15 \mathrm{p}$. Write this program on a separate sheet of paper. Use one side of one sheet. Label it clearly. Accept an integer from the command line (argv). Tell whether it is a multiple of 2 or not.
$10 / 15$ p. Write this program on a separate sheet of paper. Use one side of one sheet. Label it clearly. Prompt for and accept two integers, a and b. Print the integers from a to b.
$11 / 15$ p. Write this program on a separate sheet of paper. Use one side of one sheet. Label it clearly. Given n on the command line, print a triangle of stars, 1 on top, n at the bottom.
$12 / 15 \mathrm{p}$. Write this program on a separate sheet of paper. Use one side of one sheet. Label it clearly. Prompt for and accept a dollar amount. Tell how to pay that amount using the smallest number of the following bills and coins: twenty, five, one, quarter, dime, nickel, penny. Example input: 36.19, output: twenty $=1$, five $=3$, one $=1$, dime $=1$, nickel $=1$, penny $=4$.

Total points 89 .

Answer Key (points per line)

