
Intelligent Systems Study Guide

Don Colton
Brigham Young University–Hawaii

December 11, 2013



Preface

This is the official study guide for the CS 490R class, Intelligent Systems
(Artificial Intelligence), as taught by Don Colton, Fall 2013. It is focused
directly on the grading of the course.

http://byuh.doncolton.com/cs440/2135/sguide.pdf is the study guide,
which is this present document. It may be updated at any time through-
out the semester, as new assignments are clarified and material is added.

Syllabus

http://byuh.doncolton.com/cs440/2135/syl.pdf is the official syllabus
for this course. It is largely reproduced in Chapter 2 (page 7) below.

Study Guide

The content of this study guide is centered on three projects and two skills
that will be main parts of the curriculum of this course. It also contains
typical final exam questions.

The skills are (a) working with conditional probabilities, and (b) solving
propositional logic systems by resolution.

The projects are (a) robotic vacuum cleaner, (b) Wumpus hunter, and (c)
speech recognition of numbers.

Each skill or project is the subject of a chapter that provides background
and training.

1

http://byuh.doncolton.com/cs440/2135/sguide.pdf
http://byuh.doncolton.com/cs440/2135/syl.pdf


2

Test Bank

As material is covered in the book, exam questions are inserted to show what
the student should be learning. These exam questions appear throughout
the book, together with answers. At the back of the book, Appendix E
(page 100) is a Test Bank. It repeats these same questions that appeared
throughout the book, but without their answers.

The Test Bank is a way for students to test themselves by reviewing the
questions and making sure they know at least one acceptable answer.

The Test Bank is also a way for teachers to be reminded of specific things
that students should be able to answer.

Sometimes the questions and answers summarize material that is presented
nearby in greater detail.

Sometimes the questions and answers are the actual presentation of that
material. This is especially true when the specific material is something
simple like vocabulary, and repetition would be tiresome and redundant.

Following is the format in which questions and answers are presented.

Exam Question 1 (p.100):
What does AI stand for?

Acceptable Answer:
artificial intelligence

The questions are linked to make it easy for the student to jump back and
forth between the test bank and the content chapters.



Contents

1 Introduction 5

2 Syllabus Extracts 7

3 Readings 17

4 Conditional Probability 18

5 Bayesian Probability 26

6 Propositional Resolution 30

7 Projects in General 36

8 Vacuum 39

9 Hunt the Wumpus 44

10 Number Recognition 48

11 Exam Topics 57

A CC2001: Intelligent Systems 64

B Vacuum Driver Source Code 73

3



CONTENTS 4

C Wumpus Driver Source Code 84

D Numbers Driver Source Code 96

E Test Bank 100

Index 106



Chapter 1

Introduction

Contents

1.1 Sending Me Email . . . . . . . . . . . . . . . . . . 5

1.1 Sending Me Email

These rules apply to all emails related to this class.

Rule One: Send emails to doncolton2@gmail.com

Rule Two: Put cs490r in your email subject line.

Rule Three: Single-topic emails get answered faster than multi-topic emails
do. Avoid combining several topics in a single email.

I must confess, I sometimes get buried in email. I do not want to overlook
your email to me, or have it end up caught in my spam filter. And for my
own sanity I want to be able to find and deal with all the email related to
this class at the same time. This is especially true for large classes.

My solution is to have you put cs490r in your email subject line, preferably
as the first word. If you do this, my email system will immediately and
automatically respond to you, telling you that I got your email and it is in
my queue.

If you fail to do this, you will not get an immediate reply and your email
will end up in some other queue in my work flow. Your email will not be
noticed when I am grading for this class. In the best case I will read your

5



CHAPTER 1. INTRODUCTION 6

email and ask you to send it again with the correct word in the subject line.
In the worst case your email will be in my spam folder and I will never even
see it.

You have been warned.



Chapter 2

Syllabus Extracts

The syllabus is intended to be stable and reliable. I publish the syllabus at
the start of the semester, and then I do not change it in any way, except in
case of extreme emergency.

The study guide, on the other hand, gets changed and updated throughout
the semester.

This chapter of the study guide simply repeats, for your convenience, ma-
terial given in the syllabus. In case it differs from the syllabus, the syllabus
itself is always correct and authoritative, and this study guide is probably
out of date.

2.1 Overview

Artificial Intelligence (AI) has been a goal of computer scientists since the
earliest days of computing. It has benefited and suffered from overblown
expectations. It has had seasons of high respect and great disdain. Every
computer scientist needs a basic understanding of AI, including its termi-
nology and its accomplishments.

2.1.1 There May Be Changes

Like all courses I teach, I will be keeping an eye out for ways this one could
be improved. Changes generally take the form of opportunities for extra
credit, so nobody gets hurt and some people may be helped. If I make a

7



CHAPTER 2. SYLLABUS EXTRACTS 8

change to the course and it seems unfair to you, let me know and I will try
to correct it.

2.1.2 Preparation

We assume you can program in at least one language available under Linux.
We require that programs in your chosen language can be run from the
command line. There will be three programming tasks that require this
skill. Commonly students use either Perl, Java, or C++ for these tasks.

We assume that you are familiar with the content usually learned in an
Algorithms class, including manipulation of lists, trees, and graphs, and
including search (breadth first, depth first).

2.2 Course Details

• Course Number: CS 490R, formerly CS 440.
• Title: Intelligent Systems
• Course Description: Fundamental issues in intelligent systems, search

and constraint satisfaction, knowledge representation and reasoning.
(Prerequisite: CS 301.)
• Textbook: Artificial Intelligence, A Modern Approach, Second Edi-

tion, by: Stuart Russell and Peter Norvig 1080 pages. ISBN: 0-13-
790395-2. Prentice Hall.
• Classroom: GCB 101
• Start/End: Tue, Sep 10 to Tue, Dec 9
• Class Time: TTh 09:20 to 10:50
• Final Exam: Thu, Dec 12, 10:00–12:50

The textbook is a department rental. The third edition has been published
but we will continue to use the second edition because it is adequate for our
needs. If you wish, you can purchase the second or third edition (through
Amazon, for instance) and use it instead of renting the second edition.

The textbook views the field as having a goal to build intelligent agents. I
think this framework makes it easier to understand what AI really is and is
not.

If you plan to study Artificial Intelligence at graduate school, you are strongly
encouraged to dig deeply into the textbook. It is excellent.



CHAPTER 2. SYLLABUS EXTRACTS 9

2.2.1 Important Website Links

• Don Colton Home Page (General):
http://doncolton.com/

• Prof Colton Home Page (BYUH):
http://byuh.doncolton.com/

• Course Home Page:
http://byuh.doncolton.com/cs440/

• Learning Management System:
https://dcquiz.byuh.edu/

2.2.2 The Instructor

• Instructor (me): Don Colton
• My email: doncolton2@gmail.com
• My Office: GCB 128 or 111
• Office Hour: MWF 13:10 to 13:40

I may digitally record the audio of my lectures some days.

2.3 Learning Objectives

In this class we will gain the basic understanding of AI that is needed by
every computer scientist. We will write several programs that utilize AI
technology.

By the conclusion of this course, students will do the following.

1. Explain fundamental issues in intelligent systems.

2. Explain search in terms of problem space and goal state.

3. Correctly perform propositional calculus resolution.

4. Correctly perform conditional probability calculations.

5. Explain and use Bayes theorem.

6. Construct and test intelligent agents in several settings.

7. Use a corpus to develop a speech recognition program.

8. Defend the need for having established corpora for speech.

http://doncolton.com/
http://byuh.doncolton.com/
http://byuh.doncolton.com/cs440/
https://dcquiz.byuh.edu/


CHAPTER 2. SYLLABUS EXTRACTS 10

2.4 Grading

Grading is on a standard 60/70/80/90 model using 1000 points.

Based on 1000 points
930+ A 900+ A– 870+ B+

830+ B 800+ B– 770+ C+

730+ C 700+ C– 670+ D+

630+ D 600+ D– 0+ F

https://dcquiz.byuh.edu/ is my personal Learning Management System.
There I maintain an online grade book. You can see how your points are
adding up. You can compare your points with other students in the class
(without seeing any names).

http://byuh.doncolton.com/cs440/2135/sguide.pdf is a study guide that
includes specific details about the exams and programming assignments.

Readings (200 points): Each week for 11 weeks, two points are awarded
for each ten minutes of reading, up to 20 points (100 minutes) per week. 200
points are needed for full credit toward your final grade. Any extra points
earned will be treated as extra credit.

We anticipate that you will actually spend about nine hours per week on
activities related to this class, with three hours in class, maybe two hours in
readings, and the other four hours in other forms of study, including taking
practice tests and writing programs.

The first point is simply for reading. The second point is for making an
oral report in class. As you read, you should prepare notes (talking points)
about your readings. Prepare to talk for about three minutes. You can talk,
for example, about what you studied, why you selected it, what you learned,
and/or where you think your studies might lead you next.

For example, if you read for 50 minutes, that will earn you 5 points. If
you then deliver a three-minute oral report on that reading, you will double
those points.

Your study time must represent your undivided attention. (You cannot
claim credit for reading while watching TV, for instance.) It can be spent
skimming a large number of pages or reading carefully a small number of
pages. You can choose where to read.

https://dcquiz.byuh.edu/
http://byuh.doncolton.com/cs440/2135/sguide.pdf


CHAPTER 2. SYLLABUS EXTRACTS 11

Conditional Probability (100 points): We will study conditional prob-
ability for about two weeks and give you three chances on three separate
days to get your best score on a 30-minute, 50-question probability test.

Vacuum Agent (150 points): You will program a vacuum agent. It will
compete with other vacuum agents at cleaning a (virtual) room. Your score
will be based on your program’s cleaning performance. This will be our
focus for about three weeks.

Resolution (100 points): We will study propositional calculus resolution
for about two weeks and give you three chances on three separate days to
get your best score on a timed 25-question resolution test.

Wumpus Agent (150 points): You will program a wumpus-hunting
agent. It will compete with other agents. Your score will be based on
your program’s performance. This will be our focus for about three weeks.

Numbers Recognition (150 points): You will program a speech recogni-
tion program. It will receive phonetic transcriptions of spoken numbers and
will convert them into words. You will compete with other such programs.
Your score will be based on your program’s performance. This will be our
focus for about three weeks.

Final Exam (150 points): You will write briefly about a number of terms
selected from the textbook and from our in-class discussions. The exam will
be “half open” by which I mean that during the first half of the exam,
it is closed-book and closed-notes. At the middle of the exam time I will
announce that you can open your books. The remainder of the exam is
open-book and open-notes. Answers must be written in your own words,
not simply copied from the book.

2.5 General Calendar

Tu Sep 10 24: Syl, CP
Th Sep 12 23: CP, exam
Tu Sep 17 22: CP, R1, exam
Th Sep 19 21: CP, exam
Tu Sep 24 20: VA, R2
Th Sep 26 19: VA bake off
Tu Oct 01 18: VA, R3
Th Oct 03 17: VA bake off
Tu Oct 08 16: VA, R4



CHAPTER 2. SYLLABUS EXTRACTS 12

Th Oct 10 15: VA bake off
Tu Oct 15 14: Res, R5
Th Oct 17 13: Res, exam
Tu Oct 22 12: Res, R6, exam
Th Oct 24 11: Res, exam
Tu Oct 29 10: WA, R7
Th Oct 31 9: WA bake off
Tu Nov 05 8: WA, R8
Th Nov 07 xx: ISECON, No Class
Tu Nov 12 7: WA, R9
Th Nov 14 6: WA bake off
Tu Nov 19 xx: EIL Program Review, No Class
Th Nov 21 5: NR
Tu Nov 26 4: NR, R10
Th Nov 28 xx: Thanksgiving, No Class
Tu Dec 03 3: NR, R11
Th Dec 05 2: NR bake off
Tu Dec 10 1: NR bake off
Th Dec 12 0: Final

2.6 Tutoring and Study Groups

For a 400-level class, tutoring basically does not exist. Your best bet is to
ask about things during class. You are also welcome to bring your questions
to me during office hours or outside of office hours. And other faculty may
enjoy discussing your questions with you.

2.6.1 Study Groups

You are encouraged to form a study group. If you are smart, being in a
study group will give you the opportunity to assist others. By assisting
others you will be exposed to ideas and approaches that you might never
have considered on your own. (Some will be flat out lame. Others will be
insightful and challenging.) You will benefit.

If you are less smart, being in a study group will give you the opportunity to
ask questions from someone that remembers what it is like to be totally new
at this subject. They are more likely to understand your questions because



CHAPTER 2. SYLLABUS EXTRACTS 13

they sat through the same classes you did, took the same tests as you did,
and probably thought about the same questions that you did.

2.7 BYUH Learning Framework

I believe in the BYUH Framework for Learning. If we follow it, class will be
better for everyone.

Prepare: Before class, study the course material and develop a solid under-
standing of it. Try to construct an understanding of the big picture and how
each of the ideas and concepts relate to each other. Where appropriate use
study groups to improve yours and others understanding of the material.

In CS 490R: Read, practice, and program. Find interesting topics to ask
about.

Engage: When attending class actively participate in discussions and ask
questions. Test your ideas out with others and be open to their ideas and
insights as well. As you leave class ask yourself, “Was class better because
I was there today?”

In CS 490R: Participate in the in-class activities and discussions.

Improve: Reflect on learning experiences and allow them to shape you into
a more complete person: be willing to change your position or perspective
on a certain subject. Take new risks and seek further opportunities to learn.

In CS 490R: Read, practice, and program. Find interesting topics to ask
about.

2.8 Standard Statements

All syllabi are encouraged or required to address certain topics. These are
generally considered to be common sense, but we find that it is useful to
mention them explicitly anyway.

2.8.1 Dress and Grooming Standards

The dress and grooming of both men and women should always be modest,
neat and clean, consistent with the dignity adherent to representing The



CHAPTER 2. SYLLABUS EXTRACTS 14

Church of Jesus Christ of Latter-day Saints and any of its institutions of
higher learning. Modesty and cleanliness are important values that reflect
personal dignity and integrity, through which students, staff, and faculty
represent the principles and standards of the Church. Members of the BYUH
community commit themselves to observe these standards, which reflect the
direction given by the Board of Trustees and the Church publication, “For
the Strength of Youth.” The Dress and Grooming Standards are as follows:

Men. A clean and neat appearance should be maintained. Shorts must
cover the knee. Hair should be clean and neat, avoiding extreme styles or
colors, and trimmed above the collar leaving the ear uncovered. Sideburns
should not extend below the earlobe. If worn, moustaches should be neatly
trimmed and may not extend beyond or below the corners of mouth. Men
are expected to be clean shaven and beards are not acceptable. (If you have
an exception, notify the instructor.) Earrings and other body piercing are
not acceptable. For safety, footwear must be worn in all public places.

Women. A modest, clean and neat appearance should be maintained.
Clothing is inappropriate when it is sleeveless, strapless, backless, or reveal-
ing, has slits above the knee, or is form fitting. Dresses, skirts, and shorts
must cover the knee. Hairstyles should be clean and neat, avoiding extremes
in styles and color. Excessive ear piercing and all other body piercing are
not appropriate. For safety, footwear must be worn in all public places.

2.8.2 Accommodating Special Needs

Brigham Young University Hawaii is committed to providing a working and
learning atmosphere which reasonably accommodates qualified persons with
disabilities. If you have any disability that may impair your ability to com-
plete this course successfully, you are invited to contact the Students With
Special Needs Coordinator at 808-675-3518. Reasonable academic accommo-
dations are made for all students who have qualified documented disabilities.

2.8.3 Plagiarism

We learn by watching others and then doing something similar.

Sometimes it is said that plagiarism is copying from one person, and research
is copying from lots of people.

When you are having trouble with an assignment, I encourage you to look



CHAPTER 2. SYLLABUS EXTRACTS 15

at not just one, but many examples of work done by others. Study the
examples. See what you can learn from them. Do not automatically trust
that they are right. They may be wrong.

Do not just copy. Do your own work. When I review computer code,
sometimes I see quirky ways of doing things. They appear to work even
though they may be wrong. And then I see someone else that has done it
exactly the same wrong way. This does not feel like “doing your own work.”
Cut and paste is pretty much an honor code violation. Read and learn is
totally okay. Copying other ideas is okay. I don’t want to see any cut and
paste.

http://en.wikipedia.org/wiki/Plagiarism has a wonderful article on
plagiarism. Read it if you are not familiar with the term. Essentially, pla-
giarism is when you present the intellectual work of other people as though
it were your own. This may happen by cut-and-paste from a website, or by
group work on homework. In some cases, plagiarism may also create a vio-
lation of copyright law. If you borrow wording from someone else, identify
the source.

Intentional plagiarism is a form of intellectual theft that violates widely rec-
ognized principles of academic integrity as well as the Honor Code. Such
plagiarism may subject the student to appropriate disciplinary action admin-
istered through the university Honor Code Office, in addition to academic
sanctions that may be applied by an instructor.

Inadvertent plagiarism, whereas not in violation of the Honor Code, is nev-
ertheless a form of intellectual carelessness that is unacceptable in the aca-
demic community. Plagiarism of any kind is completely contrary to the
established practices of higher education, where all members of the univer-
sity are expected to acknowledge the original intellectual work of others that
is included in one’s own work.

CS 490R: In this course group work is permitted and encouraged
but you are not allowed to turn in work that is beyond your un-
derstanding, whether you give proper attribution or not. Make
sure you understand what you are submitting and why each line
is there.

CS 490R: On exams you are required to work from personal mem-
ory, using only the resources that are normally present on your
computer. This means the exams are closed book and closed notes.
However, you are nearly always allowed (and encouraged!) to test

http://en.wikipedia.org/wiki/Plagiarism


CHAPTER 2. SYLLABUS EXTRACTS 16

your program by actually running it on the computer where you
are sitting. Students caught cheating on the final exam may re-
ceive a grade of F for the semester, no matter how many points
they may have earned, and they will be reported to the Honor
Code office.

Faculty are responsible to establish and communicate to students their ex-
pectations of behavior with respect to academic honesty and student con-
duct in the course. Observations and reports of academic dishonesty shall
be investigated by the instructor, who will determine and take appropriate
action, and report to the Honor Code Office the final disposition of any inci-
dent of academic dishonesty by completing an Academic Dishonesty Student
Violation Report. If the incident of academic dishonesty involves the vio-
lation of a public law, e.g., breaking and entering into an office or stealing
an examination, the act should also be reported to University Police. If an
affected student disagrees with the determination or action and is unable
to resolve the matter to the mutual satisfaction of the student and the in-
structor, the student may have the matter reviewed through the university’s
grievance process.

2.8.4 Sexual Harassment

BYUH’s policy against sexual harassment complies with federal Title IX
of the Education Amendments of 1972 to protect university students from
student-to-student sexual harassment both in and out of the classroom set-
ting. Any incidents of such student-to-student harassment should be re-
ported to either the Director of Human Resources (808-675-3713) or the
Honor Code Office (808-675-3531). Allegations of sexual harassment are
taken seriously. Upon receiving a report of sexual harassment, the Direc-
tor of Human Resources will take appropriate action to resolve and correct
conditions resulting from individual perceptions or from inappropriate be-
havior.



Chapter 3

Readings

You are assigned to read in the textbook for a certain amount of time each
week. However, your specific readings are self directed.

Our textbook, Artificial Intelligence, A Modern Approach, Second Edition,
by: Stuart Russell and Peter Norvig (1080 pages. ISBN: 0-13-790395-2.
Prentice Hall.) is a department rental. (The third edition has been published
but we will continue to use the second edition because it is adequate for our
needs.)

While reading, you should prepare notes (talking points) about your readings
so you can report in class. Be prepared to talk for about three minutes over
what you studied, why you selected it, what you learned, and where you
think your studies might lead you next.

Chapter 11 (page 57) contains a preliminary list of topics that you should
know about. Read through that list and if something catches your attention,
make a note of it and follow up in your readings.

Appendix A (page 64) identifies learning objectives considered important by
the curriculum committees established by the two largest professional soci-
eties in computing. Again, read through that list and if something catches
your attention, make a note of it and follow up in your readings.

If you think you might like to study Artificial Intelligence / Intelligent Sys-
tems at graduate school, you are strongly encouraged to dig deeply into the
textbook. It is excellent and will give you incredible preparation for that
field.

17



Chapter 4

Conditional Probability

Contents

4.1 Monty Hall . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Strategy: Venn . . . . . . . . . . . . . . . . . . . . 19

4.3 Strategy: Table . . . . . . . . . . . . . . . . . . . . 20

4.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . 21

4.5 Sample Problems . . . . . . . . . . . . . . . . . . 22

• Exam #1: Thu, Sep 12.
• Exam #2: Thu, Sep 19.

Probability, Conditional Probability, and Updating of Probability are im-
portant skills relating to Artificial Intelligence and Intelligent Systems.

This is true because intelligent systems may be required to select between
different possible actions where the outcomes are not certain, but can be
estimated in terms of probability. To make the best choice, expected
values must be calculated.

http://en.wikipedia.org/wiki/Conditional_probability

For this class, we will test you by giving you probability information and
asking you to calculate other probability information.

Probabilities are always numbers between zero (meaning it never happens)
and one (meaning it always happens). We will normally write them as
fractions.

18

http://en.wikipedia.org/wiki/Conditional_probability


CHAPTER 4. CONDITIONAL PROBABILITY 19

You are given certain probabilities. Your task is to find the requested prob-
ability. Express your answer as a reduced fraction (like 5/7).

4.1 Monty Hall

To show how difficult it is to guess the right probability, consider the Monty
Hall problem. (Do a Google search if necessary.)

Monty Hall, a famous television host, offers you a prize behind one of three
doors. Behind one door is a new car. Behind each other door is a goat. You
have a 1-in-3 chance of picking the car. You pick a door.

After you pick a door, Monty opens one of the other two doors, revealing a
goat.

Question: What is the probability that you picked the car, given that you
know where one of the goats is? If you have the opportunity to switch your
choice, should you do it?

Most people have a very hard time figuring this out. Is your probability still
1/3? Is your probability now 1/2? What do you believe?

Thinking about it another way, let’s have 100 doors with 99 goats. After you
pick a door, Monty opens 98 other doors, revealing 98 goats. Now there are
two doors closed, the one you picked and the one he did not reveal. What is
your probability now? Is it 1/100? Is it 1/2? Is it something else entirely?

4.2 Strategy: Venn

Most students are familiar with the Venn diagram.

http://en.wikipedia.org/wiki/Venn_diagram has a wonderful article that
gives useful information. Even students familiar with Venn may learn some-
thing new.

One good approach to solving problems in conditional probability is to con-
struct a Venn diagram using the facts at hand. Then, using the Venn dia-
gram, determine the answer.

http://en.wikipedia.org/wiki/Venn_diagram


CHAPTER 4. CONDITIONAL PROBABILITY 20

4.3 Strategy: Table

Another approach is to construct a three-by-three probability table.

B -B

A (1) (2) (3)

-A (4) (5) (6)

(7) (8) (9)

(1) is the joint probability that A and B are both true.

(2) is the joint probability that A is true and B is false.

(3) is the simple probability that A is true, whether or not B is true.
It is the sum of (1) and (2).

(4) is the joint probability that A is false and B is true.

(5) is the joint probability that A and B are both false.

(6) is the simple probability that A is false, whether or not B is true.
It is the sum of (4) and (5).

(7) is the simple probability that B is true, whether or not A is true.
It is the sum of (1) and (4).

(8) is the simple probability that B is false, whether or not A is true.
It is the sum of (2) and (5).

(9) is always 1.0.
It is the sum of (3) and (6).
It is also the sum of (7) and (8).

For simplicity, if we are working with whole numbers, we can write in (9)
the denominator (least common multiple) that applies to all cells. That is,
instead of writing 6/13 in cell (1), we could write 6 in cell (1) and 13 in cell
(9).

We begin by drawing the grid and labeling the sides. Then we consult our
given information and fill in the blanks that we know.

If we know the probability that A is true, we write it in cell (3). We can
then calculate the probability that A is false and write it in cell (6).

If we know the probability that B is true, we write it in cell (7). We can
then calculate the probability that B is false and write it in cell (8).



CHAPTER 4. CONDITIONAL PROBABILITY 21

Eventually we can read off the cells (2), (1), (4), and (5), to get the values
that would be used in a Venn diagram.

4.4 Notation

You should be familiar with the commonly used notations relating to prob-
ability. These are often written with mathematical symbols.

http://en.wikipedia.org/wiki/Truth_table has much more.

Primitives: These are some of the primitive wordings and operations used
with probability.

p(x) : When you see p() read it as “the probability that ... is true”.

∩ : When you see ∩ read it as the word “and”. It can also be read as the word
“intersection”. It can be pronounced “cap”. It is also called conjunction.

∪ : When you see ∪ read it as the word “or”. It can also be read as the
word “union”. It can be pronounced “cup”. It is also called disjunction.

x : When you see a bar over something, read it as the word “not”.

| : When you see | read it as the word “given”.

→ : When you see → read it as the word “implies”. Note that “implies” is
not the same as “causes”.

Expressions: These are typical combinations of the five primitives into
longer expressions.

p(A) means “the probability that A is true”.

p(A)=5/7 means that in the universe of possibilities, there are basically
seven equally likely groupings of things, and in five of them A is true.

p(A∩B) means the (joint) probability that both A and B are true. We may
also write this as p(A and B).

p(B) means “the probability that not B is true”, or in other words, “the
probability that B is false”. We may also write this as p(not B).

p(A∩B) means the probability that A is true and B is false. We may also
write this as p(A and not B).

p(A|B) means the probability that A is true if we already know that B is
true. We may also write this as p(A given B).

http://en.wikipedia.org/wiki/Truth_table


CHAPTER 4. CONDITIONAL PROBABILITY 22

p(A→B) means the probability that if A is true, then B is also true. We
may also write this as p(A implies B).

4.5 Sample Problems

http://quizgen.doncolton.com/ quiz q45 provides additional opportuni-
ties for you to learn and practice these skills.

Given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

You should first derive the following Venn diagram: (4(2)5)7.

The “(4(2)” part represents the A circle in the Venn diagram. It means
that in four cases, A is true but B is not true. In two cases A is true and B
is true. It does not say anything about when A is false.

The “(2)5)” part represents the B circle in the Venn diagram. It means that
in two cases, B is true and A is also true. In five cases B is true but A is
not true. It does not say anything about when B is false.

The “7” part represents the space outside the A and B circles. It means
that in seven cases both A and B are false.

Each of these 4, 2, 5, and 7 cases are independent and equally likely, for a
total of 18 possible cases.

Exam Question 2 (p.100):
Find p(A ∩B) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

Acceptable Answer:
2/9

Exam Question 3 (p.100):
Find p(A∩B) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

Acceptable Answer:
5/18

Exam Question 4 (p.100):
Find p(A ∩B) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

Acceptable Answer:
7/18

Exam Question 5 (p.100):
Find p(A|B) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

http://quizgen.doncolton.com/


CHAPTER 4. CONDITIONAL PROBABILITY 23

Acceptable Answer:
2/7

Exam Question 6 (p.100):
Find p(A|B) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

Acceptable Answer:
4/11

Exam Question 7 (p.100):
Find p(B|A) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

Acceptable Answer:
1/3

Exam Question 8 (p.100):
Find p(B|A) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

Acceptable Answer:
5/12

Given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12, you should first derive the fol-
lowing Venn diagram: (3(7)1)1.

Exam Question 9 (p.100):
Find p(A∩B) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

Acceptable Answer:
1/12

Exam Question 10 (p.100):
Find p(A ∩B) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

Acceptable Answer:
1/12

Exam Question 11 (p.100):
Find p(A|B) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

Acceptable Answer:
7/8

Exam Question 12 (p.100):
Find p(A|B) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

Acceptable Answer:
3/4

Exam Question 13 (p.100):



CHAPTER 4. CONDITIONAL PROBABILITY 24

Find p(B|A) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

Acceptable Answer:
7/10

Exam Question 14 (p.101):
Find p(B|A) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

Acceptable Answer:
1/2

Given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21, you should first derive the fol-
lowing Venn diagram: (7(2)7)5.

Exam Question 15 (p.101):
Find p(A ∩B) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

Acceptable Answer:
1/3

Exam Question 16 (p.101):
Find p(A∩B) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

Acceptable Answer:
1/3

Exam Question 17 (p.101):
Find p(A ∩B) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

Acceptable Answer:
5/21

Exam Question 18 (p.101):
Find p(A|B) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

Acceptable Answer:
2/9

Exam Question 19 (p.101):
Find p(A|B) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

Acceptable Answer:
7/12

Exam Question 20 (p.101):
Find p(B|A) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

Acceptable Answer:



CHAPTER 4. CONDITIONAL PROBABILITY 25

2/9

Exam Question 21 (p.101):
Find p(B|A) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

Acceptable Answer:
7/12



Chapter 5

Bayesian Probability

Contents

5.1 The Product Rule . . . . . . . . . . . . . . . . . . 26

5.2 Detailed Example . . . . . . . . . . . . . . . . . . 27

5.3 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . 28

http://en.wikipedia.org/wiki/Thomas_Bayes has information about Thomas
Bayes (1702-1761).

Bayes comes up a lot in AI in connection with probabilistic inference. It is
surprisingly simple.

5.1 The Product Rule

The product rule is this:

p(a∧b) = p(a|b)p(b) or p(a∧b) = p(b|a)p(a)

We will show an example of this shortly.

Combining these two forms, we get Bayes’ rule, aka Bayes’ law, aka Bayes’
theorem, which is this:

p(b|a) = p(a|b)p(b)/p(a)

(For some reason, I have a hard time remembering the Bayes’ rule, but a
somewhat easier time remembering the product rule. Fortunately for me, it
is easy to derive Bayes from product.)

26

http://en.wikipedia.org/wiki/Thomas_Bayes


CHAPTER 5. BAYESIAN PROBABILITY 27

Each of p(a) and p(b) are called prior probabilities, or a priori proba-
bilities. They are the probabilities that something is true when you don’t
know anything else about anything.

p(a|b) is the conditional probability that a is true given that you already
know b is true.

Exam Question 22 (p.101):
What is the product rule?

Acceptable Answer:
p(a and b) = p(a given b)p(b)

Exam Question 23 (p.101):
What is Bayes’ rule?

Acceptable Answer:
p(a given b) = p(b given a)p(a)/p(b)

5.2 Detailed Example

Let’s look at what this means by way of a Venn diagram.

In this example, p(A) = 8/26, p(A∧B) = 5/26, and p(B) = 12/26.

Bayes’ rule is used to calculate p(b|a) when our basic facts include p(a|b),
p(a), and p(b). We do this as follows.



CHAPTER 5. BAYESIAN PROBABILITY 28

We know that p(A∧B) = p(A|B)p(B). What does that mean? p(A|B) is
the probability of A given that B is known to be true.

In this case, we have 5+7=12 cases where B is true, and in 5 of them, A is
also true. Hence, p(A|B) is 5/12.

We now have our three facts: p(A|B) = 5/12, p(A) = 8/26, and p(B) =
12/26.

The product rule tells us that multiplying p(A|B) by p(B) we get p(A∧B).
Specifically, 5/12 times 12/26 equals 5/26. Notice that the 12s cancel each
other out.

The product rule tells us that dividing p(A∧B) by p(A) we get p(B|A) which
is our goal. 5/26 divided by 8/26 equals 5/8. Notice that the 26s cancel
each other out.

We can check our work by counting up the chances directly. We see there
are 8 chances for a to be true, and in 5 of them, b is also true. Therefore
p(b|a) is 5/8.

Bayes’ rule just combines the two applications of the product rule.

p(B|A) = p(A|B)p(B)/p(A)

p(B|A) = (5/12)(12/26)/(8/26)

5.3 Bayes’ Rule

Let’s look at two propositions.

A: The sound ah was uttered.

B: The computer thinks it heard the sound ah.

We want to know the probability that ah was uttered when the computer
recognizes an ah: p(u|r).

We can find the prior probability that ah was uttered by looking at a corpus
of speech labeled by trained human transcribers. Let’s make up a number
and say that out of some corpus of speech, ah is uttered in one percent of
the frames.

p(u) = 0.01

We can find the prior probability that ah was recognized by looking at a
similar corpus of speech labeled by computer. Let’s make up a number and



CHAPTER 5. BAYESIAN PROBABILITY 29

say that in that corpus of speech, ah is recognized in two percent of the
frames.

p(r) = 0.02

Due to confusion between similar phonemes, let’s say that out of the times
ah was actually uttered, it is recognized as the most likely phoneme 3/4 of
the time.

p(r|u) = 0.75

From this we can calculate p(u|r), the probability that ah was uttered given
the computer recognized it.

p(u|r) = p(r|u)p(u)/p(r) = 0.75 * 0.01 / 0.02 = 0.375.

I guess in this case our computer is not very accurate yet.



Chapter 6

Propositional Resolution

Contents

6.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 How to Resolve . . . . . . . . . . . . . . . . . . . . 32

6.3 Canonical Grading Form . . . . . . . . . . . . . . 33

6.4 Sample Problems . . . . . . . . . . . . . . . . . . 33

• Prac: Thu, Oct 17.
• Exam: Thu, Oct 24.

Resolution is the process of combining truth clauses to arrive at the most
simplified version of those clauses.

We will restrict our attention to the domain called Propositional Logic
or “Propositional Calculus”. (There is another more complicated domain
called Predicate Calculus or “first order predicate calculus” or simply
first order logic.) In the propositional domain, the basic (atomic) clauses
are simple propositions that have a well-defined truth value, being either
true or false.

For example, the clauses “It is raining” and “If it is raining then the ground
will be wet” can be used to deduce that “The ground will be wet.”

Many years ago philosophers and logicians created lists of rules by which
these deductions could be made. They are called rules of inference, or

30



CHAPTER 6. PROPOSITIONAL RESOLUTION 31

sometimes syllogisms. Many of them have Latin names, like modus po-
nens.

http://en.wikipedia.org/wiki/Modus_ponens has an introduction to the
subject, and includes a list of other rules of inference in propositional calculus
and predicate calculus.

In 1965 the philosopher / mathematician / computer scientist John Alan
Robinson pointed out that all these rules of inference can be simplified
down to a reliable and complete process called resolution.

http://en.wikipedia.org/wiki/Resolution_(logic) discusses resolution.

We expect you to learn and correctly apply resolution to a series of clauses
that you will be given. We explain how to do that below.

6.1 Notation

Vocabulary: The following words are important.

Conjunction means “and” and is sometimes represented by the symbol ∧.

Disjunction means “or” and is sometimes represented by the symbol ∨.

Basics: (1) The list of TRUE statements is called the knowledge base
(the KB). We will add and delete statements to improve the list. (2) Each
statement is called a clause, and consists of an or-list (disjunction) of
simple propositions. If it is in the KB, it is claimed to be TRUE. (3) Each
simple proposition is either TRUE or FALSE. Put another way, for every
proposition (p), the clause “(p) or (not p)” must be TRUE.

“I am dry” is a simple proposition, and “I have an umbrella” is a simple
proposition. Typically we abbreviate propositions down to letters or short
words for convenience. The statement “I am dry, or I don’t have an um-
brella” could be written as “(dry) or (not umbrella)” or “dry -umb” or even
“d -u”. Each such statement is called a clause. As mentioned above, every
clause in the KB is asserted to be TRUE.

We will express our knowledge base as a conjunction of disjunctions.

http://en.wikipedia.org/wiki/Conjunctive_normal_form discusses this
form, conjunctive normal form, which is also called CNF.

Each clause is a disjunction of propositions. In a clause expressed as a
disjunction of propositions, one of the propositions must be true. If one

http://en.wikipedia.org/wiki/Modus_ponens
http://en.wikipedia.org/wiki/Resolution_(logic)
http://en.wikipedia.org/wiki/Conjunctive_normal_form


CHAPTER 6. PROPOSITIONAL RESOLUTION 32

proposition is true, then the whole clause becomes true.

Each clause in the knowledge base must be true. When all must be true, we
call that a conjunction.

6.2 How to Resolve

Rule 1 (clause simplification): We can drop any proposition we know to
be FALSE from a clause because the whole clause must be TRUE, and the
FALSE part clearly isn’t helping. This is exactly like regular math where
adding zero does not change anything. If x+0=5 we can drop the +0 and
be left with x=5. If (a) or (b) or (c) is TRUE, and we know that (a) is
FALSE, then we can drop it, leaving (b) or (c) is TRUE.

Rule 2 (reduction): Adding more propositions to a clause (an or-list)
cannot change it from TRUE to FALSE. That is the nature of OR. If we
know (b) is TRUE, then (b) or (c) is also TRUE, no matter what (c) is. As
a direct result, if we have two clauses in the KB, and the little one is an
exact subset of the big one, we can throw away the big one without losing
any information. For example, if we know (i can drive), it does not help to
also say (i can drive) or (i am rich). It tells nothing about my riches.

Rule 2 (special case): If we have a clause that includes “a -a” within it,
we can delete it from the KB. The clause provides no information, since we
already know that either (a) or (not a) is TRUE. It is called a tautology,
and the “a” and “-a” are called complementary literals.

Rule 3 (resolution): New clauses can be created from old clauses. This
part is a little tricky, but it is very powerful. If we have the clause “a x”,
and we also have the clause “-a y”, we can combine them to create a new
clause. Notice that one includes “a” in its or-list, and the other includes the
opposite, “-a”. By basic rule 1, (a) is either TRUE or FALSE. Here is the
tricky part. IF (a) is TRUE, then (not a) must be FALSE, so the second
clause simplifies into (y) is TRUE. On the other hand, if (a) is FALSE, then
the first clause simplifies into (x) is TRUE. We can splice the original clauses
together to deduce “x y”. More generally, if we have (lots of things) or (a),
and (other things) or (not a), we can combine them into (lots of things) or
(other things). That’s resolution.

Rule 3 (gotcha): If you have “a b more1” and “-a -b more2” there is a
temptation to conclude “more1 more2”. However, one cannot combine on



CHAPTER 6. PROPOSITIONAL RESOLUTION 33

both “a” and “b” at the same time. The correct combination on “a” would
result in “b more1 -b more2” which includes “b -b” which is always true.
Hence by the special case already mentioned, the conclusion can be dropped.

Procedure: To simplify the KB, we look at pairs of clauses. If one is a
subset of the other, we delete the bigger one. If they share complementary
propositions (one has (a) and the other has (not a)) we use resolution to
generate a new clause and insert it into the KB (unless the new clause
was already there). We continue looking at all pairs of clauses until no more
insertions or deletions can be made. Careful ordering can make the job much
faster; always reduce when you can. But whatever order you do things, you
will always get the same result in the end.

6.3 Canonical Grading Form

There are many ways to write the same thing. The clauses could potentially
be in any order. The propositions within the clauses could potentially be in
any order.

For ease in grading, we require the following order. This makes all correct
answers look the same, so grading can be done by exact match. (Putting it
in this order is easier than it sounds.)

(1) First arrange each clause into alphabetical order. The sorting order is -
(dash) then [a-z].

(2) Have a single space before and after each proposition. This makes it
easier for us to catch mistakes before grading occurs.

(3) Next order the whole clauses into alphabetical order.

(4) Have a single space between clauses.

Everything should fit onto a single line, a conjunction of disjunctions,
conjunctive normal form (CNF).

Additional lines, such as comments, may not be included.

6.4 Sample Problems

Reduce each of the following to its most simple form through resolution.
Each letter represents a proposition that is either TRUE or FALSE. Each



CHAPTER 6. PROPOSITIONAL RESOLUTION 34

(clause) is a TRUE statement (at least one proposition is TRUE).

http://quizgen.doncolton.com/ quiz q41 provides additional opportuni-
ties for you to learn and practice these skills.

Exam Question 24 (p.101):
Resolve: ( -a c ) ( -b a ) ( -c a ) ( -c b ) ( b c )

Acceptable Answer:
( a ) ( b ) ( c )

Exam Question 25 (p.101):
Resolve: ( -a b ) ( -b c ) ( a b )

Acceptable Answer:
( b ) ( c )

Exam Question 26 (p.101):
Resolve: ( -c -d a ) ( a b d ) ( a c ) ( a c d )

Acceptable Answer:
( -d a ) ( a b ) ( a c )

Exam Question 27 (p.101):
Resolve: ( -b -c a ) ( -c b d ) ( -d a b )

Acceptable Answer:
( -c a ) ( -c b d ) ( -d a b )

Exam Question 28 (p.101):
Resolve: ( -a d ) ( -b c ) ( -c a ) ( -d a c ) ( a b )

Acceptable Answer:
( -b c ) ( a ) ( d )

Exam Question 29 (p.101):
Resolve: ( -b a ) ( -b a c ) ( -c -d a ) ( a b c )

Acceptable Answer:
( -b a ) ( -d a ) ( a c )

Exam Question 30 (p.101):
Resolve: ( -a -b c ) ( -b -c d ) ( -b a )

Acceptable Answer:
( -b a ) ( -b c ) ( -b d )

Exam Question 31 (p.101):
Resolve: ( -a -c b ) ( -a -d c ) ( -b d ) ( -c a b )

http://quizgen.doncolton.com/


CHAPTER 6. PROPOSITIONAL RESOLUTION 35

Acceptable Answer:
( -a -b c ) ( -a -d b ) ( -a -d c ) ( -b d ) ( -c b ) ( -c d )

Exam Question 32 (p.101):
Resolve: ( -c -d a ) ( -d b c ) ( a b ) ( a c d ) ( c d )

Acceptable Answer:
( -c -d a ) ( a b ) ( b c ) ( c d )

Exam Question 33 (p.101):
Resolve: ( -a -d c ) ( -d a ) ( a b )

Acceptable Answer:
( -d a ) ( -d c ) ( a b )



Chapter 7

Projects in General

Contents

7.1 How To Submit . . . . . . . . . . . . . . . . . . . 36

7.2 Choice of Language . . . . . . . . . . . . . . . . . 37

7.3 Bake Off . . . . . . . . . . . . . . . . . . . . . . . . 38

A substantial portion of your learning in this class will come as a result of
programs that you write.

7.1 How To Submit

You will submit your projects by copying the files into a special inbox on
the IS2 machine. The location of the inbox is:

~dc/inbox/

The inbox is set up as a “write only” destination. That means you can copy
things into the inbox but you cannot edit them or retrieve them from the
inbox.

To submit your work, first, create or import the files into your own file space
on the IS2 machine. Make sure the files are complete and work properly.

Next, copy (do not move) the files into the inbox. For example, if your file
is named “John1”, you would copy it using the following command:

cp John1 ~dc/inbox/

36



CHAPTER 7. PROJECTS IN GENERAL 37

Note: “mv” also works, kind of, but sometimes fails. “cp” is more reliable.

Note: Some students have attempted to upload their files directly into the
inbox. Very often this fails because the inbox is “write only.” It is much
more reliable to upload the files into your own file space first and then to
copy them to the inbox.

Note: Some students have attempted to create their files directly within the
inbox by using a text editor. Very often this fails because the inbox is “write
only.” It is much more reliable to create the files into your own file space
first and then to copy them to the inbox.

7.2 Choice of Language

You can use any programming language that supports these features:

(a) Programs will be run under Linux on the IS2 machine.

(b) You program can use the name assigned by the instructor. Typically
this consists of your own name followed by one or more digits. The first
version of my program might be assigned the name “Don1” and the second
version “Don2”.

(c) Your program must successfully run from the command line by typ-
ing its assigned name, such as “./Don1”. There will be no command line
arguments.

(d) Your program can receive and process character input provided through
STDIN.

(e) Your program can provide character output through STDOUT.

(f) Your program is permitted to have and to create additional files, but all
additional files must start with the assigned name followed by a dot. If the
name is “yadda” (for example), your main executable file must be named
“yadda” and you may have additional files named “yadda.*” where the “*”
can be anything, including a directory (folder) within which your files can
be named anything you like.

C and C++ are known to work well.

Perl is known to work well.

Ruby is known to work well.



CHAPTER 7. PROJECTS IN GENERAL 38

Tcl/Expect is known to work well.

Java is known to work, but it’s a bit more tricky. You will probably use a
“wrapper” for your primary executable, and it will start your actual pro-
gram. Also, Java seems to have very long start-up times which can make
your program appear to run slowly.

7.3 Bake Off

We will compare student programs (projects) by competing in a bake off.
This terminology has reference to contests of cooking skills where each baker
is required to produce some item of food that will be judged. By judging
the food item we assess the skills of the baker.

Essentially we will give each program the same starting point and then run
them simultaneously. Programs will earn points according to the rules of
each project. Those with the most points will receive the better grades.

You will have access to the testing harness under which your program will
be judged. This will allow you to test your program before submitting it for
grading.



Chapter 8

Vacuum

Contents

8.1 Vacuum Rules . . . . . . . . . . . . . . . . . . . . 39

8.2 Vacuum Scoring . . . . . . . . . . . . . . . . . . . 41

8.3 Vacuum Driver . . . . . . . . . . . . . . . . . . . . 42

8.4 Vacuum Agent . . . . . . . . . . . . . . . . . . . . 42

• Bake Off #1: Thu, Sep 26.
• Bake Off #2: Thu, Oct 3.
• Bake Off #3: Thu, Oct 10.
• Bake Off #4: Tue, Dec 10.

For this task, you will program a vacuum cleaner. You should visit every
place in the room, clean what is dirty, return to your home base, and quit.

The room is divided into a grid of squares. Each square is either occupied
by an obstacle, or is dirty, or is clean. One square is designated as your
home square.

8.1 Vacuum Rules

Your program is a vacuum that cleans an arbitrary room of grid cells. Make
your program an executable that will run from the command line.

Invoke the driver with a list of clients on the command line.

39



CHAPTER 8. VACUUM 40

Example: ./vD vacIdiot vacIdiot vacIdiot

(You can read the driver source code for more information.)

A percept is something perceived by the agent (the robot). At the start of
each turn, you receive a vector of percepts that tell you all the things you
can currently perceive. If this were an actual robot instead of a virtual one,
the percepts would be provided by physical hardware built into the robot.

All communication with your program is via STDIN and STDOUT. On
each turn, your vacuum will receive via STDIN the current set of percepts.
On each turn, your vacuum must respond within 1 second with an action.
(Don’t worry. 1 second is a long time. This is just to let the driver respond
properly to failed agents that have dropped into an infinite loop.)

The room is generated at random, on a square-cell pattern, with walls and
furnishings filling some of the cells. The vacuum starts at a randomized
home location and must finish at that some location.

The driver prompts the vacuum by sending a set of percepts. The percepts
are, in order, radar-left, radar-front, radar-right, dirt, and home. Each is
a binary quantity, with 1 representing true and 0 representing false. The
percepts are space-separated and terminated by newline. For example, “1 0
0 1 0\n”.

The vacuum responds by giving a command. The valid commands are:
“forward\n”: move forward one cell, if possible, else do not move. “left\n”:
turn left 90 degrees, staying in the same cell. “right\n”: turn right 90
degrees, staying in the same cell. “vacuum\n”: pick up dirt in the current
cell. “off\n”: turn off, indicating the task is completed.

For the benefit of human players, the driver will reply with “what?” in
case an invalid command is entered. Robotic vacuums should not need this
functionality.

For the benefit of robotic players, the driver will echo and ignore any line
starting with a “#” mark. This allows the robot to make reports to its
programmer to aid in debugging.

The driver creates a visual display of each vacuum’s activity, showing the
starting random seed, a diagram of the room and vacuum, and a score to
date. By using the same random seed, different vacuums can be compared.
Score is -100 per dirt remaining, +100 per dirt captured, -1 per command
issued, and +100 for ending in the proper cell (direction faced does not
matter). Since it is anticipated that all vacuums will seek out all dirt and



CHAPTER 8. VACUUM 41

eliminate it, the score differences will be based on how quickly the task is
accomplished.

Setup:

Download the vD.txt vacuum driver. Rename it if you wish. chmod it to
be executable. It is a tcl/expect program.

Download the vA.txt vacuum idiot agent. Rename it if you wish. chmod it
to be executable. It is a Perl program.

On the command line, type the following command:

./vD vacIdiot vacIdiot vacIdiot vacIdiot

This will run the driver with four copies of the “idiot” sample program. (We
call it the idiot because it just moves randomly with no planning.)

Create your own program that will behave like the idiot, only lots smarter.
Be prepared to submit it in class for competition with agents written by
other students.

In the bake off, each vacuum will receive the same starting location and
room configuration. All will run until a winner is determined. Total points
earned will be compared to determine grades.

8.2 Vacuum Scoring

Success: This task is worth 150 points. For full credit, we expect your
vacuum agent to consistently clean the entire room and end up at the des-
ignated starting location. We are not so worried about the exact efficiency
of your moves, so long as you finish in a reasonable amount of time.

The vacuum that earns the top score will also be the one that completes
the task in the least number of moves. We will use that number of moves
as our standard. Each vacuum will be given 500 moves initially. Then, if
at least one vacuum completed successfully, we will allow all other vacuum
double their number of moves before we calculate final scores. For example,
if after 500 moves we see that someone completed in 350 moves, we will
allow everyone another 200 moves (350 x 2 = 500 + 200) before we stop the
round of competition. If the best score is less than 250 moves, we will stop
at 500.

Vacuums that have covered every square possible, and picked up all the dirt



CHAPTER 8. VACUUM 42

possible, and ended at the designated location, all within the moves allotted,
will get full credit.

We will run at least ten rounds of competition, so the vacuums are compared
in a variety of randomly generated settings. We will average the results to
determine final grades for this task.

Extra Credit: Bonus points may be used to reward agents that are es-
pecially efficient. This is calculated by comparing the agent’s score with
typical scores of all successful agents.

Partial Credit: For agents that fail to cover the entire room, or that fail to
end at the designated starting location, points will be awarded in proportion
to their final score as reported by the vacuum driver, in comparison to typical
scores of all successful agents.

8.3 Vacuum Driver

Appendix B (page 73) presents a version of the driver program that will be
used to evaluate student programs.

8.4 Vacuum Agent

Following is a sample agent program that is used to illustrate the basics of
how the student program could be constructed.

#! /usr/bin/perl -w

$moves = 0;

while ( 1 ) {

chomp ( $line = <STDIN> );

# print "# $line\n";

( $rl, $rf, $rr, $d, $h ) = split ( / /, $line );

$r = rand(); $moves++;

if ( $d ) { print "vacuum\n"; next }

if ( $moves > 1 && $h ) { print "off\n"; last }

if ( $rf && $rl ) { print "right\n"; next }

if ( $rf && $rr ) { print "left\n"; next }

if ( $rl && $rr ) { print "forward\n"; next }



CHAPTER 8. VACUUM 43

if ( $rf ) { $dir = "left";

if ( $r > 0.5 ) { $dir = "right" }

print "$dir\n"; next }

if ( $rl ) { $dir = "forward";

if ( $r > 0.85 ) { $dir = "right" }

print "$dir\n"; next }

if ( $rr ) { $dir = "forward";

if ( $r > 0.85 ) { $dir = "left" }

print "$dir\n"; next }

$dir = "forward";

if ( $r > 0.95 ) { $dir = "left" }

if ( $r < 0.05 ) { $dir = "right" }

print "$dir\n";

}



Chapter 9

Hunt the Wumpus

Contents

9.1 Wumpus Rules . . . . . . . . . . . . . . . . . . . . 45

9.2 Wumpus Scoring . . . . . . . . . . . . . . . . . . . 46

9.3 Wumpus Driver . . . . . . . . . . . . . . . . . . . 46

9.4 Wumpus Agent . . . . . . . . . . . . . . . . . . . . 47

• Bake Off #1: Thu, Oct 31.
• Bake Off #2: Thu, Nov 14.

Your task in the Wumpus World is to explore a small system of caves,
retrieve the gold if possible, avoid death at the hands of the Wumpus, and
avoid death by falling into one of the pits.

The Wumpus is a fictional creature that does not like adventurers, except
to eat them.

Your task is to earn points by searching for Gold in a cave system. The
system is a four-by-four grid. You begin in the lower left corner (1,1) and
you are facing right (East).

You are guaranteed that your initial position and the two squares you can
reach are safe from hazards.

You should decide your moves by calculating the probability of various dan-
gers. You initially know that the Wumpus is located in one of the other 13

44



CHAPTER 9. HUNT THE WUMPUS 45

cells. You also know that the gold is located in one of the 13 cells. You also
know that each of the 13 cells has a 20% chance of being a pit.

9.1 Wumpus Rules

Maximize your points, which you gain and lose as follows. Cost: -1 for
each action Cost: -10 for shooting your arrow Penalty: -10 for bumping
into a wall Penalty: -1000 for death (by pit or Wumpus) Reward: +1000
for getting the gold Reward: +100 for each new room visited / explored
Reward: +100 for quitting back at the entrance (1,1) Reward: +100 for
killing the Wumpus

Make your program an executable that will run from the command line in
a Linux environment.

All communication with your program is via STDIN and STDOUT. On each
turn, your hunter will receive via STDIN as set of percepts. On each turn,
your hunter must respond within 1 second with an action. (Don’t worry. 1
second is a long time unless your program falls into an infinite loop.)

The percepts come as a comma-separated list of five bits of information:
(stench,breeze,glitter,bump,scream). Each bit is shown as a letter “y” or a
letter “n”.

Example: n,n,n,n,n

Stench: “y” means you can smell the Wumpus in an adjacent cell

Breeze: “y” means you can tell there is a pit in an adjacent cell

Glitter: “y” means there is gold in the current cell.

Bump: “y” means you tried to move forward but ran into a wall and did
not move.

Scream: “y” means you shot the Wumpus and it is now dead and no longer
dangerous. You can still smell it if you are close enough.

In addition to the specified five inputs, the line may contain other inputs
that you should ignore. Specifically, it may contain a counter indicating how
many moves have been made, but you should not rely on it.

You must reply one of (S,shoot,L,left,R,right,A,forward,G,grab,Q,quit)

Setup:



CHAPTER 9. HUNT THE WUMPUS 46

Download the wD program. chmod it to be executable. It is a tcl/expect
program.

For an example, download the wA (idiot) agent. chmod it to be executable.
It is a Perl program.

On the command line, type the following command:

./wD wA

This will run the driver with one copy of the “idiot” sample program. (We
call it the idiot because it just moves randomly with no planning.) When
one agent is running, the driver displays debug information.

./wD wA wA wA wA

This will run the driver with four copies of the “idiot” sample program.
When several agents are running, the driver does not display debug infor-
mation.

Create your own program that will behave like the idiot, but much smarter.
Be prepared to submit it in class for competition with agents written by
other students.

9.2 Wumpus Scoring

Full credit is earned if you successfully visit all the places that are safe,
retrieve the gold if possible, shoot the Wumpus if possible, do not bump
into any walls, and quit back at the starting location. This should be your
goal.

Otherwise, partial credit may be awarded. It will probably be based on your
agent’s points in comparison to the best agents, but the exact formula is yet
to be determined.

9.3 Wumpus Driver

Appendix C (page 84) presents a version of the driver program similar to
the one that will be used to evaluate student programs. The actual driver
can be downloaded from the course webpage.



CHAPTER 9. HUNT THE WUMPUS 47

9.4 Wumpus Agent

Following is a sample agent program that illustrates the basics of how the
student program could be constructed. However, if this is all you do, you
will not earn much credit if any.

The sample agent can be downloaded from the course webpage.

#! /usr/bin/perl -w

$moves = 0;

while ( 1 ) {

chomp ( $line = <STDIN> );

# print "# $line\n";

( $stench, $breeze, $glitter, $bump, $scream ) =

split ( /,/, $line );

$action = "forward";

$r = int ( rand ( 4 ) ); $moves++;

if ( $r == 0 ) { $action = "left" }

if ( $r == 1 ) { $action = "right" }

print "$action\n";

}



Chapter 10

Number Recognition

Contents

10.1 Overview . . . . . . . . . . . . . . . . . . . . . . . 48

10.2 Preparation . . . . . . . . . . . . . . . . . . . . . . 49

10.3 Background . . . . . . . . . . . . . . . . . . . . . . 49

10.4 Phonemes . . . . . . . . . . . . . . . . . . . . . . . 50

10.5 Vocabulary . . . . . . . . . . . . . . . . . . . . . . 52

10.6 Over Training . . . . . . . . . . . . . . . . . . . . . 52

10.7 Scoring . . . . . . . . . . . . . . . . . . . . . . . . . 53

10.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . 54

10.9 Testing Your Program . . . . . . . . . . . . . . . 54

10.10Numbers Scoring . . . . . . . . . . . . . . . . . . . 55

10.11Numbers Driver . . . . . . . . . . . . . . . . . . . 56

10.12Numbers “Agent” . . . . . . . . . . . . . . . . . . 56

• Bake Off #1: Thu, Dec 5.
• Bake Off #2: Tue, Dec 10.

10.1 Overview

Your task is to write a program that converts phonemes into numbers.
The phonemes are presented as a time-aligned transcription where each

48



CHAPTER 10. NUMBER RECOGNITION 49

phoneme has a starting time, an ending time, and a symbolic represen-
tation. The resulting numbers are to be expressed in written characters as
whole individual words.

10.2 Preparation

On the IS2 machine, set up a test bed. Create a directory where you will
do your testing. You can follow these steps:

cd yourtestdirectory

ln -s ~dc/cs440/numbers/data data

cp data/nD driver

cp data/nIdiot sample

./driver ./sample data/0/*

ln -s ~dc/cs440/numbers/data data gives you ready access to the files
you will use for testing.

cp data/nD driver gives you a copy of the test driver. You can use this
just as it is.

cp data/nIdiot sample gives you a copy of a very simple-minded recogni-
tion program. What it really shows you is how to bring in the inputs and
put out the outputs.

data/0/* gives you one tenth of all the data files. The driver program will
run your recognition program repeatedly, each time with a different set of
inputs. If your program gives the right answer, you get points. If not, it
tells you what the inputs were and the expected and actual outputs. Then
you fix your program and test again.

You can write your program anywhere. You can upload it for testing. The
testing will happen on the IS2 machine.

10.3 Background

CSLU is the Center for Spoken Language Understanding. I am familiar
with it because it was the home to my PhD program back in the 1990s.



CHAPTER 10. NUMBER RECOGNITION 50

We will use as our standard the CSLU Numbers corpus. A sample of this
corpus is available for free download from the CSLU Corpus website. At
this writing, the homepage for CSLU corpora is:

http://www.cslu.ogi.edu/corpora/corpCurrent.html

Find the Numbers Corpus, probably version 1.3.

Download the sample file, probably called numbers_sample.zip and store
it somewhere so you can use it for the remainder of this project.

Open the file and review its contents. You should find a folder (directory)
named “labels” and another folder named “trans”. The labels directory
contains the time-aligned phonetic labels in files each with a .phn extension.
The trans directory contains the orthographic (normal writing) transcrip-
tions in files each with a .txt extension.

All files are in plain ASCII text.

Display: Your instructor may ask you to display a matching pair of files, one
.phn and one .txt, to show that you understand the file organization and to
verify that you can work with the files.

10.4 Phonemes

Phonemes are sounds from which utterances are built up. Commonly phonemes
can be divided into two categories: vowels and consonants.

The word “cat” generally is spoken using the three phonemes “k”, “a”, “t”.

The word “Kate” generally is spoken using the four phonemes “k”, “eh”,
“ee”, “t”.

IPA, Worldbet, and OGIbet English Broad Phonetic Labels

There are around 50 different phonemes in English. You can find them
described on the chart on the next page.

http://www.cslu.ogi.edu/corpora/corpCurrent.html


IPA, Worldbet, and OGIbet English Broad Phonetic Labels
Center for Spoken Language Understanding { Oregon Graduate Institute of Science & Technology

IPA Worldbet OGIbet Example Category
iq i: iy beet
* I ih bit Front
� E eh bet Vowels
� @ ae bat
+ I_x ix roses
T u_x ux suit Central
� & ax above Vowels
y� &0 to go
� 5 pot (British)
u u uw boot
V U uh book Back
� ^ ah above Vowels
= > ao caught
� A aa father
� 3r er bird Retro-
� &r axr butter 
exes
ei ei ey bay
a* aI ay bye Diph-
=i >i oy boy thongs
iV iU few
aV aU aw about
oV oU ow boat
i� i& here (British)
e� e& there (British)
u� u& poor (British)

ph ph p pan Voiceless
th th t tan Plosives
kh kh k can
b b b ban Voiced
d d d dan Plosives
g g g gander

m m m me
n n n knee Nasals
8 N ng sing

Dt th_( dx writer Flaps
Dd d_( dx rider
f f f fine
S T th thigh Voiceless
s s s sign Fricatives
M S sh assure
h h hh hope
v v v vine
� D dh thy Voiced
z z z resign Fricatives
` Z zh azure
Q tS ch church A�ricates
� dZ jh judge

l l l lent Glides
H 9r r rent
j j y yes (approxi-
w w w went mants)
jm m= em bottom
jn n= en button Syllabics
j8 N= eng

lj l= el bottle

IPA Worldbet OGIbet Example Category
pc pcl pan Voiceless
tc tcl tan Plosive
kc kcl can Closures
bc bcl ban Voiced
dc dcl dan Plosive
gc gcl gander Closures
tSc chcl church A�ricate
dZc jhcl judge Closures
+ .epi epinthetic closure

IPA Worldbet OGIbet Type of Diacritic
th _h -h aspirated

_x centralized
tg dg _[ dental

_( 
apped (consonant)
_F fricated stop
_?* q glottal onset

|= _? -q glottalized
dh _l lateral release
iq _: -el lengthened
dn _n nasal release
~e _~ -n nasalized

_NL .nitl not in the language
tj _j palatalized
� _r -r retro
exion
~= _i less rounded
�= _w more rounded
jG _= syllabicity
}s _v voiced
n. d. _0 voiceless

_* - waveform cut o�

Worldbet, as modi�ed at OGI

_fp -fp �lled pause
_ln -ln line noise corruption
_bn background noise

Worldbet OGIbet Non Speech Sound Item
.bn .bn background noise
.br .br breath noise

.cough .cough cough
.ct .ct clear throat

.laugh .laugh laugh
.ln .ln lin noise
.ls .ls lip smack
.ns .ns human, not speech

.sneeze .sneeze sneeze
.tc .tc tongue click

Worldbet, as modi�ed at OGI

.beep .beep beep

.burp .burp burp
.fp .fp �lled pause
.pau .pau pause or silence
.sniff .sniff sni�
.uu .unk unintelligible speech
.vs .vs squeak, voice crack
.glot glot glottalization



CHAPTER 10. NUMBER RECOGNITION 52

10.5 Vocabulary

The full CSLU Numbers corpus consists of about 23,900 utterances, each
with a phonetic transcription and an orthographic transcription. The tran-
scriptions were prepared by trained human transcribers.

The sample corpus consists of 283 transcribed utterances, or about one
percent of the full corpus.

The following (64 or so) words will be counted in the scoring.

a and double eight eighteen eighteenth eighth eightieth eighty eleven eleventh
fifteen fifteenth fifth fiftieth fifty first five fortieth forty four fourteen four-
teenth fourth half hundred hundredth nine nineteen nineteenth ninetieth
ninety ninth oh one second seven seventeen seventeenth seventh seventieth
seventy six sixteen sixteenth sixth sixtieth sixty ten tenth third thirteen thir-
teenth thirtieth thirty thousand three triple twelfth twelve twentieth twenty
two zero

All other words and fragments of words will be ignored.

However, you may need to account for the fact that some non-scored words
will occur in the utterances that you are processing.

10.6 Over Training

Your program is performing a recognition task. There are two ways to
approach such a task. One is by strict memorization. You check to see
which of the 283 cases you are viewing and you report the correct results
for that case.

The other is by a careful combination of memorization (basis cases) and
rules (induction). Rather than memorizing the 283 sample results, you
may memorize the 46 words that occur in the sample results. And you may
create suitable rules to combine the memorized results to make additional,
non-memorized results.

A brief example may help. When we calculate 4+3, and we are very small,
we may hold up four fingers on one hand and three on the other hand. Then
we may count all the fingers to arrive at a total of seven. In this example,
the meaning of 4 was memorized, the meaning of 3 was memorized, and the
process of combining them was memorized. 4 and 3 are part of the basis.



CHAPTER 10. NUMBER RECOGNITION 53

The process is part of the induction.

Later in life, we may actually memorize our “addition facts” or “addition
tables” and come to know that 4+3=7 without ever counting it out. We
can tackle a problem like 639+15 by breaking it up into smaller problems:
9+5=14; write down the 4 and carry the 1. 3+1+1 is 5; write it down and
carry zero. 6 comes down for a total of 654. In this process, the single-digit
additions were memorized and the rules for carry and column order provide
the inductive step to we can add numbers of any size.

Because this same situation occurs in recognizing numbers, we must be
careful to keep our basis set as small as possible, within reason. It is good
to divide your corpus (the 283 utterances) into parts. One part can be
used for development. You can look at those utterances in great detail and
analyze them to understand your task. Another part can be used for testing.
You use those utterances to see how well your program performs. The great
risk is that you will train your program to recognize your 283 utterances
very well, but you will fail to recognize the other 23,600 utterances. That is
called over training. Use your resources carefully.

10.7 Scoring

(Updated 10 Dec 2013)

On a 200-point basis, scores will be as follows.

For a accuracy rates from 0 to 40%, the grade is accuracy * 5 / 4. The grade
range is 0 to 50 points.

For a accuracy rates from 40 to 70%, the grade is 50 points plus accuracy
above 40 * 5 / 3. The grade range is 50 to 100 points.

For a accuracy rates from 70 to 90%, the grade is 100 points plus accuracy
above 70 * 5 / 2. The grade range is 100 to 150 points.

For a accuracy rates above 90%, the grade is 150 points plus accuracy above
90 * 10. The grade range is 150 to 250 points. (Above 95% accuracy is extra
credit.)



CHAPTER 10. NUMBER RECOGNITION 54

10.8 Evaluation

I intend to give you more than the 283 utterances that are in the sample
set. If so, you must not disclose them beyond this class. That is part of the
license agreement I signed in order to get the corpus. You can study the
additional utterances to improve your performance.

When you believe you have a reasonable performance rate for your program,
you can request me to test it. I will test a maximum of five versions of your
program. Your score for the assignment will be the score you earn on your
fifth (or last) test.

When I test your program, I will report the number of utterances it correctly
recognized, meaning that the entire utterance was exactly right in every way.
I will provide you with my testing script, but not with the data files that I
am using.

The input files (.phn) are given to you in their original form, redirected to
you as STDIN standard input, with results captured from you as STDOUT
standard out. Your file should present one word per line, interspersed at
your discretion with comment lines that I will ignore. Comment lines will
be identified by a “#” as the first character of the line.

Each corpus transcription file (.txt) will be “normalized” by being stripped
of all words that start with dot (such as .pau), and all characters that
are enclosed in angle brackets (such as <bn>). Letters will be converted to
lower case. Runs of white space will be converted to a single space. The
28 characters a-z, apostrophe, and space, will be kept. All other characters
will be deleted.

Most but not all human transcriptions are correct. A few are wrong, so it
is impossible to get a perfect score. Also some transcriptions include word
fragments. But try to get the best score you can.

10.9 Testing Your Program

Here is a sample program you can key in and test.

#! /usr/bin/perl --

while ( $in = <STDIN> ) { print "# got input: $in" }

print "one two three four five\n" ;# your answer



CHAPTER 10. NUMBER RECOGNITION 55

You can test it by following these steps.

(1) Create a directory for this project in your account on the is2 machine.

(2) Inside that directory, create these symbolic links:

ln -s ~dc/cs440/numbers/data

ln -s ~dc/cs440/numbers/nDriver

(3) Put your program in your directory. We will assume you have called it
“Don0”.

(4) Test your program by running the following command line.

./nDriver ./Don0 data/sample/NU-1*

(5) You should see two program executions, with details of your program’s
operation.

The summary tells your accuracy, (number correct / number tested), and
your score, (-1000 * log2(error rate)), max 9999.

Every time you cut your error rate in half, your score goes up by 1000.

An accuracy of 0.00 (none right) results in a score of 0.

An accuracy of 0.50 results in a score of 1000.

An accuracy of 0.75 results in a score of 2000.

An accuracy of 0.875 results in a score of 3000.

The maximum score is 9999.

Driving down your error rate really drives up your score.

(6) Now improve your program to print the correct answer each time.

(7) You can submit your program to the instructor by copying it as follows:

cp Don0 ~dc/inbox/

10.10 Numbers Scoring

To be added.



CHAPTER 10. NUMBER RECOGNITION 56

10.11 Numbers Driver

Appendix D (page 96) presents a version of the driver program that will be
used to evaluate student programs.

10.12 Numbers “Agent”

No sample program will be given for this task.



Chapter 11

Exam Topics

On the final exam you will be asked to discuss important topics from the
textbook or our class discussions. You will write from memory about the
subject, telling what it is, why it is important, and other comments you
may wish to share. Students typically write for two to three minutes on
each topic.

Following is a preliminary list of topics based on prior semesters readings
and discussions.

In addition to this list, consider the learning objectives mentioned in chapter
A (page 64).

Exam Question 34 (p.101): Discuss: Artificial Intelligence

Exam Question 35 (p.101): Discuss: Turing test

Exam Question 36 (p.101): Discuss: automated reasoning

Exam Question 37 (p.101): Discuss: machine learning

Exam Question 38 (p.102): Discuss: total Turing test

Exam Question 39 (p.102): Discuss: agent

57



CHAPTER 11. EXAM TOPICS 58

Exam Question 40 (p.102): Discuss: dualism

Exam Question 41 (p.102): Discuss: materialism

Exam Question 42 (p.102): Discuss: logical positivism

Exam Question 43 (p.102): Discuss: algorithm

Exam Question 44 (p.102): Discuss: Godel’s incompleteness theorem

Exam Question 45 (p.102): Discuss: intractability

Exam Question 46 (p.102): Discuss: NP-completeness

Exam Question 47 (p.102): Discuss: machine evolution

Exam Question 48 (p.102): Discuss: genetic algorithms

Exam Question 49 (p.102): Discuss: expert systems

Exam Question 50 (p.102): Discuss: frames

Exam Question 51 (p.102): Discuss: rational agent

Exam Question 52 (p.102): Discuss: autonomous agent

Exam Question 53 (p.102): Discuss: simple reflex agent

Exam Question 54 (p.102): Discuss: goal-based agent

Exam Question 55 (p.102): Discuss: utility-based agent



CHAPTER 11. EXAM TOPICS 59

Exam Question 56 (p.102): Discuss: accessible environment

Exam Question 57 (p.102): Discuss: deterministic environment

Exam Question 58 (p.102): Discuss: episodic environment

Exam Question 59 (p.102): Discuss: static vs dynamic environment

Exam Question 60 (p.102): Discuss: discrete vs continuous environment

Exam Question 61 (p.102): Discuss: search

Exam Question 62 (p.103): Discuss: path cost

Exam Question 63 (p.103): Discuss: breadth-first search

Exam Question 64 (p.103): Discuss: uniform-cost search

Exam Question 65 (p.103): Discuss: depth-first search

Exam Question 66 (p.103): Discuss: depth-limited search

Exam Question 67 (p.103): Discuss: iterated deepening search

Exam Question 68 (p.103): Discuss: bidirectional search

Exam Question 69 (p.103): Discuss: heuristics

Exam Question 70 (p.103): Discuss: best-first search

Exam Question 71 (p.103): Discuss: greedy search



CHAPTER 11. EXAM TOPICS 60

Exam Question 72 (p.103): Discuss: A* search

Exam Question 73 (p.103): Discuss: admissible heuristic

Exam Question 74 (p.103): Discuss: knowledge representation

Exam Question 75 (p.103): Discuss: inference (sound, complete)

Exam Question 76 (p.103): Discuss: propositional logic

Exam Question 77 (p.103): Discuss: first-order logic

Exam Question 78 (p.103): Discuss: atomic sentence

Exam Question 79 (p.103): Discuss: predicate

Exam Question 80 (p.103): Discuss: quantified sentence

Exam Question 81 (p.103): Discuss: situational calculus

Exam Question 82 (p.103): Discuss: diagnostic rules

Exam Question 83 (p.103): Discuss: causal rules

Exam Question 84 (p.103): Discuss: unification

Exam Question 85 (p.103): Discuss: Modus Ponens

Exam Question 86 (p.104): Discuss: Horn form

Exam Question 87 (p.104): Discuss: resolution



CHAPTER 11. EXAM TOPICS 61

Exam Question 88 (p.104): Discuss: conjunctive normal form

Exam Question 89 (p.104): Discuss: implicative normal form

Exam Question 90 (p.104): Discuss: conditional plans

Exam Question 91 (p.104): Discuss: execution monitoring

Exam Question 92 (p.104): Discuss: action monitoring

Exam Question 93 (p.104): Discuss: replanning agent

Exam Question 94 (p.104): Discuss: prior probabilities

Exam Question 95 (p.104): Discuss: conditional probabilities

Exam Question 96 (p.104): Discuss: joint probability distribution

Exam Question 97 (p.104): Discuss: Bayes’ rule

Exam Question 98 (p.104): Discuss: conditional independence

Exam Question 99 (p.104): Discuss: Bayesian updating

Exam Question 100 (p.104): Discuss: belief networks

Exam Question 101 (p.104): Discuss: stochastic simulation

Exam Question 102 (p.104): Discuss: truth-functional system

Exam Question 103 (p.104): Discuss: performance element



CHAPTER 11. EXAM TOPICS 62

Exam Question 104 (p.104): Discuss: learning element

Exam Question 105 (p.104): Discuss: inductive learning

Exam Question 106 (p.104): Discuss: neural network

Exam Question 107 (p.104): Discuss: perceptron

Exam Question 108 (p.104): Discuss: linearly separable function

Exam Question 109 (p.104): Discuss: feed-forward network

Exam Question 110 (p.105): Discuss: back-propagation

Exam Question 111 (p.105): Discuss: Bayesian learning

Exam Question 112 (p.105): Discuss: multi-layer feed-forward network

Exam Question 113 (p.105): Discuss: speech act

Exam Question 114 (p.105): Discuss: phrase-structure grammar

Exam Question 115 (p.105): Discuss: context-free grammar

Exam Question 116 (p.105): Discuss: encoded message

Exam Question 117 (p.105): Discuss: situated language

Exam Question 118 (p.105): Discuss: augmented grammar

Exam Question 119 (p.105): Discuss: pragmatic interpretation



CHAPTER 11. EXAM TOPICS 63

Exam Question 120 (p.105): Discuss: disambiguation

Exam Question 121 (p.105): Discuss: anytime algorithm

Exam Question 122 (p.105): Discuss: bounded optimality

Exam Question 123 (p.105): Discuss: prisoner’s dilemma



Appendix A

CC2001: Intelligent Systems

The following eight pages are taken from CC2001: Computing Curricula
2001, Computer Science. It represents the 2001 view of computer science by
the curriculum committees of ACM: the Association for Computing Ma-
chinery, and IEEE-CS: the Computer Society of the Institute for Electrical
and Electronic Engineers.

In this class, we will be mostly interested in the following learning objectives.

IS1: 1, 2, 3, 5.

IS2: 1, 2, 5.

IS3: 1, 2, 3, 4.

IS6: 1, 2, 4, 6.

IS7: 3.

These would be good topics to investigate in your weekly readings.

64



Computing Curricula 2001

Computer Science

— Final Report —
(December 15, 2001)

The Joint Task Force on Computing Curricula
IEEE Computer Society

Association for Computing Machinery

This material is based upon work supported by the
National Science Foundation under Grant No. 0003263



CC2001 Computer Science volume – 17 –
Final Report (December 15, 2001)

Figure 5-1. Computer science body of knowledge with core topics underlined

DS. Discrete Structures (43 core hours)
DS1. Functions, relations, and sets (6)
DS2. Basic logic (10)
DS3. Proof techniques (12)
DS4. Basics of counting (5)
DS5. Graphs and trees (4)
DS6. Discrete probability    (6)

PF. Programming Fundamentals (38 core hours)
PF1. Fundamental programming constructs (9)
PF2. Algorithms and problem-solving    (6)
PF3. Fundamental data structures    (14)
PF4. Recursion (5)
PF5. Event-driven programming (4)

AL. Algorithms and Complexity (31 core hours)
AL1. Basic algorithmic analysis (4)
AL2. Algorithmic strategies    (6)
AL3. Fundamental computing algorithms (12)
AL4. Distributed algorithms    (3)
AL5. Basic computability    (6)
AL6. The complexity classes P and NP
AL7. Automata theory
AL8. Advanced algorithmic analysis
AL9. Cryptographic algorithms
AL10. Geometric algorithms
AL11. Parallel algorithms

AR. Architecture and Organization (36 core hours)
AR1. Digital logic and digital systems (6)
AR2. Machine level representation of data (3)
AR3. Assembly level machine organization (9)
AR4. Memory system organization and architecture (5)
AR5. Interfacing and communication    (3)
AR6. Functional organization (7)
AR7. Multiprocessing and alternative architectures (3)
AR8. Performance enhancements
AR9. Architecture for networks and distributed systems

OS. Operating Systems (18 core hours)
OS1. Overview of operating systems (2)
OS2. Operating system principles (2)
OS3. Concurrency (6)
OS4. Scheduling and dispatch (3)
OS5. Memory management    (5)
OS6. Device management
OS7. Security and protection
OS8. File systems
OS9. Real-time and embedded systems
OS10. Fault tolerance
OS11. System performance evaluation
OS12. Scripting

NC. Net-Centric Computing (15 core hours)
NC1. Introduction to net-centric computing (2)
NC2. Communication and networking (7)
NC3. Network security (3)
NC4. The web as an example of client-server computing (3)
NC5. Building web applications
NC6. Network management
NC7. Compression and decompression
NC8. Multimedia data technologies
NC9. Wireless and mobile computing

PL. Programming Languages (21 core hours)
PL1. Overview of programming languages (2)
PL2. Virtual machines (1)
PL3. Introduction to language translation (2)
PL4. Declarations and types (3)
PL5. Abstraction mechanisms (3)
PL6. Object-oriented programming (10)
PL7. Functional programming
PL8. Language translation systems
PL9. Type systems
PL10. Programming language semantics
PL11. Programming language design

Note: The numbers in parentheses represent the minimum
number of hours required to cover this material in a lecture
format. It is always appropriate to include more.

HC. Human-Computer Interaction (8 core hours)
HC1. Foundations of human-computer interaction (6)
HC2. Building a simple graphical user interface (2)
HC3. Human-centered software evaluation
HC4. Human-centered software development
HC5. Graphical user-interface design
HC6. Graphical user-interface programming
HC7. HCI aspects of multimedia systems
HC8. HCI aspects of collaboration and communication

GV. Graphics and Visual Computing (3 core hours)
GV1. Fundamental techniques in graphics (2)
GV2. Graphic systems    (1)
GV3. Graphic communication
GV4. Geometric modeling
GV5. Basic rendering
GV6. Advanced rendering
GV7. Advanced techniques
GV8. Computer animation
GV9. Visualization
GV10. Virtual reality
GV11. Computer vision

IS. Intelligent Systems (10 core hours)
IS1. Fundamental issues in intelligent systems (1)
IS2. Search and constraint satisfaction (5)
IS3. Knowledge representation and reasoning    (4)
IS4. Advanced search
IS5. Advanced knowledge representation and reasoning
IS6. Agents
IS7. Natural language processing
IS8. Machine learning and neural networks
IS9. AI planning systems
IS10. Robotics

IM. Information Management (10 core hours)
IM1. Information models and systems    (3)
IM2. Database systems (3)
IM3. Data modeling (4)
IM4. Relational databases
IM5. Database query languages
IM6. Relational database design
IM7. Transaction processing
IM8. Distributed databases
IM9. Physical database design
IM10. Data mining
IM11. Information storage and retrieval
IM12. Hypertext and hypermedia
IM13. Multimedia information and systems
IM14. Digital libraries

SP. Social and Professional Issues (16 core hours)
SP1. History of computing (1)
SP2. Social context of computing (3)
SP3. Methods and tools of analysis (2)
SP4. Professional and ethical responsibilities (3)
SP5. Risks and liabilities of computer-based systems (2)
SP6. Intellectual property    (3)
SP7. Privacy and civil liberties    (2)
SP8. Computer crime
SP9. Economic issues in computing
SP10. Philosophical frameworks

SE. Software Engineering (31 core hours)
SE1. Software design (8)
SE2. Using APIs    (5)
SE3. Software tools and environments    (3)
SE4. Software processes (2)
SE5. Software requirements and specifications (4)
SE6. Software validation (3)
SE7. Software evolution    (3)
SE8. Software project management (3)
SE9. Component-based computing
SE10. Formal methods
SE11. Software reliability
SE12. Specialized systems development

CN. Computational Science (no core hours)
CN1. Numerical analysis
CN2. Operations research
CN3. Modeling and simulation
CN4. High-performance computing



CC2001 Computer Science volume – 128 –
Final Report (December 15, 2001)

Intelligent Systems (IS)
IS1. Fundamental issues in intelligent systems [core]
IS2. Search and constraint satisfaction [core]
IS3. Knowledge representation and reasoning [core]
IS4. Advanced search [elective]
IS5. Advanced knowledge representation and reasoning [elective]
IS6. Agents [elective]
IS7. Natural language processing [elective]
IS8. Machine learning and neural networks [elective]
IS9. AI planning systems [elective]
IS10. Robotics [elective]

The field of artificial intelligence (AI) is concerned with the design and analysis of
autonomous agents.  These are software systems and/or physical machines, with sensors
and actuators, embodied for example within a robot or an autonomous spacecraft.  An
intelligent system has to perceive its environment, to act rationally towards its assigned
tasks, to interact with other agents and with human beings.

These capabilities are covered by topics such as computer vision, planning and acting,
robotics, multiagents systems, speech recognition, and natural language understanding.
They rely on a broad set of general and specialized knowledge representations and
reasoning mechanisms, on problem solving and search algorithms, and on machine
learning techniques.

Furthermore, artificial intelligence provides a set of tools for solving problems that are
difficult or impractical to solve with other methods.  These include heuristic search and
planning algorithms, formalisms for knowledge representation and reasoning, machine
learning techniques, and methods applicable to sensing and action problems such as
speech and language understanding, computer vision, and robotics, among others.  The
student needs to be able to determine when an AI approach is appropriate for a given
problem, and to be able to select and implement a suitable AI method.

IS1. Fundamental issues in intelligent systems [core]
Minimum core coverage time: 1 hour

Topics:
History of artificial intelligence
Philosophical questions

– The Turing test
– Searle’s “Chinese Room” thought experiment
– Ethical issues in AI

Fundamental definitions
– Optimal vs. human-like reasoning
– Optimal vs. human-like behavior

Philosophical questions
Modeling the world
The role of heuristics

Learning objectives:
1. Describe the Turing test and the “Chinese Room” thought experiment.
2. Differentiate the concepts of optimal reasoning and human-like reasoning.
3. Differentiate the concepts of optimal behavior and human-like behavior.



CC2001 Computer Science volume – 129 –
Final Report (December 15, 2001)

4. List examples of intelligent systems that depend on models of the world.
5. Describe the role of heuristics and the need for tradeoffs between optimality and

efficiency.

IS2. Search and constraint satisfaction [core]
Minimum core coverage time: 5 hours

Topics:
Problem spaces
Brute-force search (breadth-first, depth-first, depth-first with iterative deepening)
Best-first search (generic best-first, Dijkstra’s algorithm, A*, admissibility of A*)
Two-player games (minimax search, alpha-beta pruning)
Constraint satisfaction (backtracking and local search methods)

Learning objectives:
1. Formulate an efficient problem space for a problem expressed in English by

expressing that problem space in terms of states, operators, an initial state, and a
description of a goal state.

2. Describe the problem of combinatorial explosion and its consequences.
3. Select an appropriate brute-force search algorithm for a problem, implement it, and

characterize its time and space complexities.
4. Select an appropriate heuristic search algorithm for a problem and implement it by

designing the necessary heuristic evaluation function.
5. Describe under what conditions heuristic algorithms guarantee optimal solution.
6. Implement minimax search with alpha-beta pruning for some two-player game.
7. Formulate a problem specified in English as a constraint-satisfaction problem and

implement it using a chronological backtracking algorithm.

IS3. Knowledge representation and reasoning [core]
Minimum core coverage time: 4 hours

Topics:
Review of propositional and predicate logic
Resolution and theorem proving
Nonmonotonic inference
Probabilistic reasoning
Bayes theorem

Learning objectives:
1. Explain the operation of the resolution technique for theorem proving.
2. Explain the distinction between monotonic and nonmonotonic inference.
3. Discuss the advantages and shortcomings of probabilistic reasoning.
4. Apply Bayes theorem to determine conditional probabilities.



CC2001 Computer Science volume – 130 –
Final Report (December 15, 2001)

IS4. Advanced search [elective]
Topics:

Genetic algorithms
Simulated annealing
Local search

Learning objectives:
1. Explain what genetic algorithms are and constrast their effectiveness with the classic

problem-solving and search techniques.
2. Explain how simulated annealing can be used to reduce search complexity and

contrast its operation with classic search techniques.
3. Apply local search techniques to a classic domain.

IS5. Advanced knowledge representation and reasoning [elective]
Topics:

Structured representation
– Frames and objects
– Description logics
– Inheritance systems

Nonmonotonic reasoning
– Nonclassical logics
– Default reasoning
– Belief revision
– Preference logics
– Integration of knowledge sources
– Aggregation of conflicting belief

Reasoning on action and change
– Situation calculus
– Event calculus
– Ramification problems

Temporal and spatial reasoning
Uncertainty

– Probabilistic reasoning
– Bayesian nets
– Fuzzy sets and possibility theory
– Decision theory

Knowledge representation for diagnosis, qualitative representation

Learning objectives:
1. Compare and contrast the most common models used for structured knowledge

representation, highlighting their strengths and weaknesses.
2. Characterize the components of nonmonotonic reasoning and its usefulness as a

representational mechanisms for belief systems.
3. Apply situation and event calculus to problems of action and change.
4. Articulate the distinction between temporal and spatial reasoning, explaining how

they interrelate.
5. Describe and contrast the basic techniques for representing uncertainty.
6. Describe and contrast the basic techniques for diagnosis and qualitative

representation.



CC2001 Computer Science volume – 131 –
Final Report (December 15, 2001)

IS6. Agents [elective]
Topics:

Definition of agents
Successful applications and state-of-the-art agent-based systems
Agent architectures

– Simple reactive agents
– Reactive planners
– Layered architectures
– Example architectures and applications

Agent theory
– Commitments
– Intentions
– Decision-theoretic agents
– Markov decision processes (MDP)

Software agents, personal assistants, and information access
– Collaborative agents
– Information-gathering agents

Believable agents (synthetic characters, modeling emotions in agents)
Learning agents
Multi-agent systems

– Economically inspired multi-agent systems
– Collaborating agents
– Agent teams
– Agent modeling
– Multi-agent learning

Introduction to robotic agents
Mobile agents

Learning objectives:
1. Explain how an agent differs from other categories of intelligent systems.
2. Characterize and contrast the standard agent architectures.
3. Describe the applications of agent theory, to domains such as software agents,

personal assistants, and believable agents.
4. Describe the distinction between agents that learn and those that don’t.
5. Demonstrate using appropriate examples how multi-agent systems support agent

interaction.
6. Describe and contrast robotic and mobile agents.

IS7. Natural language processing [elective]
Topics:

Deterministic and stochastic grammars
Parsing algorithms
Corpus-based methods
Information retrieval
Language translation
Speech recognition

Learning objectives:
1. Define and contrast deterministic and stochastic grammars, providing examples to

show the adequacy of each.



CC2001 Computer Science volume – 132 –
Final Report (December 15, 2001)

2. Identify the classic parsing algorithms for parsing natural language.
3. Defend the need for an established corpus.
4. Give examples of catalog and look up procedures in a corpus-based approach.
5. Articulate the distinction between techniques for information retrieval, language

translation, and speech recognition.

IS8. Machine learning and neural networks [elective]
Topics:

Definition and examples of machine learning
Supervised learning
Learning decision trees
Learning neural networks
Learning belief networks
The nearest neighbor algorithm
Learning theory
The problem of overfitting
Unsupervised learning
Reinforcement learning

Learning objectives:
1. Explain the differences among the three main styles of learning: supervised,

reinforcement, and unsupervised.
2. Implement simple algorithms for supervised learning, reinforcement learning, and

unsupervised learning.
3. Determine which of the three learning styles is appropriate to a particular problem

domain.
4. Compare and contrast each of the following techniques, providing examples of when

each strategy is superior: decision trees, neural networks, and belief networks..
5. Implement a simple learning system using decision trees, neural networks and/or

belief networks, as appropriate.
6. Characterize the state of the art in learning theory, including its achievements and its

shortcomings.
7. Explain the nearest neighbor algorithm and its place within learning theory.
8. Explain the problem of overfitting, along with techniques for detecting and managing

the problem.

IS9. AI planning systems [elective]
Topics:

Definition and examples of planning systems
Planning as search
Operator-based planning
Propositional planning
Extending planning systems (case-based, learning, and probabilistic systems)
Static world planning systems
Planning and execution
Planning and robotics



CC2001 Computer Science volume – 133 –
Final Report (December 15, 2001)

Learning objectives:
1. Define the concept of a planning system.
2. Explain how planning systems differ from classical search techniques.
3. Articulate the differences between planning as search, operator-based planning, and

propositional planning, providing examples of domains where each is most
applicable.

4. Define and provide examples for each of the following techniques: case-based,
learning, and probablistic planning.

5. Compare and contrast static world planning systems with those need dynamic
execution.

6. Explain the impact of dynamic planning on robotics.

IS10. Robotics [elective]
Topics:

Overview
– State-of-the-art robot systems
– Planning vs. reactive control
– Uncertainty in control
– Sensing
– World models

Configuration space
Planning
Sensing
Robot programming
Navigation and control

Learning objectives:
1. Outline the potential and limitations of today’s state-of-the-art robot systems.
2. Implement configuration space algorithms for a 2D robot and complex polygons.
3. Implement simple motion planning algorithms.
4. Explain the uncertainties associated with sensors and how to deal with those

uncertainties.
5. Design a simple control architecture.
6. Describe various strategies for navigation in unknown environments, including the

strengths and shortcomings of each.
7. Describe various strategies for navigation with the aid of landmarks, including the

strengths and shortcomings of each.



Appendix B

Vacuum Driver Source Code

Following is a version of the driver program that will be used to evaluate
student programs.

#! /usr/bin/expect --

proc v args { return 0 } ;# verbosity low

proc v args { return 1 } ;# verbosity high

proc showAll ids { uplevel { showAllN $ids } } ;# three-up

proc showAll ids { uplevel { showAll1 $ids } } ;# one-up

proc showAll ids { uplevel { showAll2 $ids } } ;# two-up

proc showAll ids { uplevel { showAll3 $ids } } ;# three-up

# Vacuum Driver, for robotic vacuums cleaning arbitrary rooms

# written by Don Colton

# argv lists the executible agent programs (non-numeric names)

# argv may (but need not) contain a numeric random number seed

# we spawn each agent and communicate through stdin/stdout

# The room is generated at random, on a square-cell pattern,

# with walls and furnishings filling some of the cells. The

# vacuum starts at a randomized location and must finish at

# that same location.

# The driver prompts the vacuum by sending a set of percepts.

# The percepts are, in order, radar-left, radar-front, radar-

# right, dirt, and home. Each is a binary quantity, with 1

73



APPENDIX B. VACUUM DRIVER SOURCE CODE 74

# representing true and 0 representing false. The percepts are

# space-separated and terminated by newline.

# For example, "1 0 0 1 0\n".

# The vacuum responds by giving a command. Valid commands are:

# "forward\n": move forward one cell, if possible.

# "left\n": turn left 90 degrees, staying in the same cell.

# "right\n": turn right 90 degrees, staying in the same cell.

# "vacuum\n": pick up dirt in the current cell.

# "off\n": turn off, indicating the task is completed.

# For the benefit of human players, the driver will reply with

# "what?" in case an invalid command is entered. Robotic

# vacuums should not need this functionality.

# For the benefit of robot players, the driver will echo and

# ignore any line starting with a "#" mark. This allows the

# robot to make reports to its programmer.

# The driver creates a visual display of the vacuum’s working,

# showing the starting random seed, a diagram of the room and

# vacuum, and a score to date. By using the same random seed,

# different vacuums can be compared. Score is -100 per dirt

# remaining, +100 per dirt captured, -1 per command issued,

# and +100 for ending in the proper cell (direction faced does

# not matter). Since it is anticipated that all vacuums will

# seek out all dirt and eliminate it, the score differences

# will be based on how quickly the task is accomplished.

#-------------------------------------------------------------

proc rand m {

set device /dev/urandom ;# /dev/random can block

set fileId [open $device r]

binary scan [read $fileId 4] i1 number

set clipped [expr $number % $m]

close $fileId

return $clipped }

proc randomSeed {seed} { global RNDseed version;

set RNDseed $seed; set version $seed; }

proc random15 {} { global RNDseed; # 15 bit int: 0..32767



APPENDIX B. VACUUM DRIVER SOURCE CODE 75

set RNDseed [expr $RNDseed * 1103515245 + 12345]

expr int ( $RNDseed / 65536 ) % 32768 }

proc random {low high} {

expr int( ($low)+[random15] * (($high)-($low)+1) / 32768) }

proc pick args {

if { [llength $args] == 1 } { set args [lindex $args 0] }

lindex $args [random 0 [expr [llength $args] - 1]] }

proc permute args { set out "";

if { [llength $args] == 1 } { set args [lindex $args 0] }

while { [llength $args] > 0 } {

set nexti [random 0 [expr [llength $args] - 1]];

lappend out [lindex $args $nexti];

set args [lreplace $args $nexti $nexti];

}; return $out; }

proc do {n body} { # based on p.123 of Tcl book

global errorInfo errorCode

while { $n > 0 } { incr n -1

set code [catch { uplevel $body } string]

if { $code == 1 } {

return -code error -errorinfo $errorInfo -errorcode $errorCode $string }

if { $code == 2 } { return -code return $string }

if { $code == 3 } { return }; # break

if { $code > 4 } { return -code $code $string }

} }

#-------------------------------------------------------------

# initialize a rectangle

proc blanket {roomIn rMin rMax cMin cMax color} {

upvar $roomIn room

for { set row $rMin } { $row <= $rMax } { incr row } {

for { set col $cMin } { $col <= $cMax } { incr col } {

set room($row,$col) $color } } }

#-------------------------------------------------------------

proc genRoom roomIn { # generate a room

upvar $roomIn room

set room(score) 0

set room(moves) 0

set room(rMin) [set rMin 1]

set room(rMax) [set rMax [random 12 18]]

set room(cMin) [set cMin 1]

set room(cMax) [set cMax [random 12 18]]



APPENDIX B. VACUUM DRIVER SOURCE CODE 76

blanket room $rMin $rMax $cMin $cMax "#"

# ============================================================

blanket room [expr $rMin + 1] [expr $rMax - 1] [expr $cMin + 1] [expr $cMax - 1] " "

do [pick 3 4 4 5] { # generate some furniture

set rW [pick 1 2 2 2 3 3]

set r0 [random $rMin+1 $rMax-$rW]; set r9 [expr $r0+$rW-1]

set cW [pick 1 2 2 2 3 3]

set c0 [random $cMin+1 $cMax-$cW]; set c9 [expr $c0+$cW-1]

blanket room $r0 $r9 $c0 $c9 "#" }

# position the vacuum somewhere

set room(vacR) [set vacR [random [expr $rMin+2] [expr $rMax-2]]]

set room(vacC) [set vacC [random [expr $cMin+2] [expr $cMax-2]]]

set room(homR) $vacR

set room(homC) $vacC

blanket room [expr $vacR-1] [expr $vacR+1] [expr $vacC-1] [expr $vacC+1] " "

set room(vacD) [pick N S E W]

# spread dirt around the room

for { set row $rMin } { $row < $rMax } { incr row } {

for { set col $cMin } { $col < $cMax } { incr col } {

if { $room($row,$col) == " " && [random 0 9] == 0 } {

set room($row,$col) "d" } } }

set room(dirt) "dirty"

set room(moves) 0

set room(name) "initial"

}

#-------------------------------------------------------------

# room layout is measured from the upper left corner

# (this is for ease of printing)

# 11 12 13 14 15 ... 1(cMax)

# 21 22 23 24 ...

# 11 is the NW corner

proc show roomIn { # show a room

upvar map$roomIn room

set output ""

set dirty 0

set score $room(score); # use a copy

set rMin $room(rMin); # integer



APPENDIX B. VACUUM DRIVER SOURCE CODE 77

set rMax $room(rMax); # integer

set cMin $room(cMin); # integer

set cMax $room(cMax); # integer

set vacR $room(vacR); # integer

set vacC $room(vacC); # integer

set homR $room(homR); # integer

set homC $room(homC); # integer

set vacD $room(vacD); # N S E W

for { set row $rMin } { $row <= $rMax } { incr row } {

set out ""

for { set col $cMin } { $col <= $cMax } { incr col } {

if ![info exists room($row,$col)] {

set room($row,$col) "#" }

set cell $room($row,$col)

if { $cell == "d" } { incr score -100; set dirty 1 }

if { "$row,$col" == "$homR,$homC" } { set cell "o" }

if { "$row,$col" == "$vacR,$vacC" } {

if { $vacD == "N" } { set cell "A" }

if { $vacD == "S" } { set cell "V" }

if { $vacD == "E" } { set cell ">" }

if { $vacD == "W" } { set cell "<" }

}

append out " $cell"

}

append output "$out\n"

}

# append output " score:$score\n"

if { $dirty == 0 } { set room(dirt) "clean" }

set room(okay) "failure"; set success ""

if { "$dirty$vacR,$vacC" == "0$homR,$homC" } {

set room(okay) "success"; set success " SUCCESS!" }

append output " $roomIn s$room(score) m$room(moves) $room(name)"

if { $room(dead) == 1 } { append output " DEAD" }

return $output }

#-------------------------------------------------------------

# this assumes all block lines are the same length

proc showAllN ids { # wide, all on one line

uplevel { set output ""

foreach id $ids { set output [merge $output [show $id]] }

return $output } }



APPENDIX B. VACUUM DRIVER SOURCE CODE 78

proc showAll1 ids {

uplevel { set outputAll ""

foreach id1 $ids { # one up

set outputLine [show $id1]

lappend outputAll $outputLine }

join $outputAll "\n" } }

proc showAll2 ids {

uplevel { set outputAll ""

foreach {id1 id2} $ids { # three up

set outputLine [show $id1]

if { $id2 != "" } {

set outputLine [merge $outputLine [show $id2]] }

lappend outputAll $outputLine }

join $outputAll "\n" } }

proc showAll3 ids {

uplevel { set outputAll ""

foreach {id1 id2 id3} $ids { # three up

set outputLine [show $id1]

if { $id2 != "" } {

set outputLine [merge $outputLine [show $id2]] }

if { $id3 != "" } {

set outputLine [merge $outputLine [show $id3]] }

lappend outputAll $outputLine }

join $outputAll "\n" } }

proc merge {block1 block2} {

set output ""

set max 0; foreach line1 [split $block1 "\n"] {

set len [string length $line1]

if { $len > $max } { set max $len } }

foreach line1 [split $block1 "\n"] line2 [split $block2 "\n"] {

lappend output "[format %-${max}s $line1] $line2" }

join $output "\n" }

#-------------------------------------------------------------

proc move mapID {

set roomIn "map$mapID"

# send_user "$mapID: starting move ($roomIn)\n"

upvar $roomIn room

# compute and write the percept vector

# room layout is measured from the upper left corner



APPENDIX B. VACUUM DRIVER SOURCE CODE 79

# 11 12 13 14 15 ... 1(cMax)

# 21 22 23 24 ...

# 11 is the NW corner

set vacR $room(vacR)

set vacC $room(vacC)

set atX $room($vacR,$vacC)

set atE "#"; catch { set atE $room($vacR,[expr $vacC+1]) }

set atN "#"; catch { set atN $room([expr $vacR-1],$vacC) }

set atS "#"; catch { set atS $room([expr $vacR+1],$vacC) }

set atW "#"; catch { set atW $room($vacR,[expr $vacC-1]) }

set vacD $room(vacD)

if { $vacD == "E" } { set atF $atE; set atL $atN; set atR $atS }

if { $vacD == "N" } { set atF $atN; set atL $atW; set atR $atE }

if { $vacD == "S" } { set atF $atS; set atL $atE; set atR $atW }

if { $vacD == "W" } { set atF $atW; set atL $atS; set atR $atN }

if { $atF == "#" } { set atF 1 } else { set atF 0 }

if { $atL == "#" } { set atL 1 } else { set atL 0 }

if { $atR == "#" } { set atR 1 } else { set atR 0 }

if { $atX == "d" } { set atX 1 } else { set atX 0 }

if { "$room(homR),$room(homC)" == "$vacR,$vacC" } {

set home 1 } else { set home 0 }

set percept "$atL $atF $atR $atX $home"

if [v] { send_user "$mapID: sending ($percept)\n" }

send "$percept\r"

expect "$percept\r\n"

# should be an overall timeout of 1 second incl comments

while { 1 } {

set expect_out(1,string) "off" ;# timeout default command

expect -re {[\r\n]*([^\r\n]+)[\r\n]+}

set cmd [string trim $expect_out(1,string)]

# send_user "got ($cmd)\n"

if ![regexp {^#} $cmd] break

if [v] { send_user "$mapID: $cmd\n" } } ;# show comment

# send_user "broke with ($cmd)\n"

# accept the response and update the map

incr room(moves)

incr room(score) -1

if { $cmd == "forward" } {



APPENDIX B. VACUUM DRIVER SOURCE CODE 80

if { $room($vacR,$vacC) == " " } {

set room($vacR,$vacC) "." }; # mark progress

if { $atF == 1 } return

if { $vacD == "N" } { incr room(vacR) -1 }

if { $vacD == "S" } { incr room(vacR) +1 }

if { $vacD == "E" } { incr room(vacC) +1 }

if { $vacD == "W" } { incr room(vacC) -1 }

return

}

if { $cmd == "left" } {

if { $vacD == "E" } { set room(vacD) "N" }

if { $vacD == "N" } { set room(vacD) "W" }

if { $vacD == "S" } { set room(vacD) "E" }

if { $vacD == "W" } { set room(vacD) "S" }

return

}

if { $cmd == "right" } {

if { $vacD == "E" } { set room(vacD) "S" }

if { $vacD == "N" } { set room(vacD) "E" }

if { $vacD == "S" } { set room(vacD) "W" }

if { $vacD == "W" } { set room(vacD) "N" }

return

}

if { $cmd == "vacuum" } {

if { $room($vacR,$vacC) == "d" } {

incr room(score) 100; set room($vacR,$vacC) " " }

return

}

if { $cmd == "off" } {

if { "$room(vacR),$room(vacC)" == "$room(homR),$room(homC)" } {

incr room(score) 100 }

return "dead" }

send_user "?? got ($cmd)\n"

return "dead" ;# declare the broken agent to be dead

# send "what?\r"

# expect "what?\r\n"

# return

}

#-------------------------------------------------------------

# copy one array to create another



APPENDIX B. VACUUM DRIVER SOURCE CODE 81

proc clone {from0 to0} { upvar $from0 from; upvar $to0 to

foreach ele [array names from] { set to($ele) $from($ele) } }

#-------------------------------------------------------------

randomSeed [exec date +%s]

# randomSeed 20020501

log_user 0

set timeout 1

if { $argc == 0 } {

send_user "Usage: vacd \[seed] agent1 agent2 agent3 ...\n"

send_user " \[seed] is an optional random number seed.\n"

send_user " each agentN is the name of a program.\n"

exit }

set playerCount 0

foreach agent $argv {

if [regexp {^[1-9][0-9]*$} $agent] {

randomSeed $agent; continue }

incr playerCount

}

# send_user "There are $playerCount players\n"

send_user "Vacuum Driver for Robots, game # $version\n"

genRoom map

set map(dead) 0

# send_user "[show ""]\n"; # initial map

set n 0; set ids ""

foreach agent $argv {

if [regexp {^[1-9][0-9]*$} $agent] continue

lappend ids [incr n]

# send_user "starting agent $n ($agent)\n"

set agent2 $agent

if { [file tail $agent2] == $agent2 } {

set agent2 "./$agent2" }

spawn $agent2

set id2spawn($n) $spawn_id

clone map map$n



APPENDIX B. VACUUM DRIVER SOURCE CODE 82

set map${n}(name) $agent }

set deads ""

set count 0

set moves 0

# set results ""

proc mygets args {

global expect_out

set expect_out(1,string) ""

set timeout -1

expect_user -re "(.*)\n"

set ans $expect_out(1,string)

return $ans }

send_user "[showAll $ids]\n"

while { 1 } {

if { [incr count -1] < 1 } {

if { $moves > 0 } {

send_user "[showAll $ids]\n"

# send_user "stopped agents: $deads\n"

}

send_user "press ENTER to continue, q to quit, num to fast-forward\n"

set ans [mygets]

if [regexp {^[1-9][0-9]*$} $ans] { set count $ans }

if [regexp {^[Qq]} $ans] break

}

incr moves; set alive 0; set deads ""

foreach id $ids {

if { [set map${id}(dead)] == 1 } {

lappend deads "$id"; continue }

set alive 1

set spawn_id $id2spawn($id)

if { [move $id] == "dead" } {

# send_user "[show $id]\n"

set map${id}(dead) 1

set m [format %3d [set map${id}(moves)]]

set s [format %4d [set map${id}(score)]]

set c [set map${id}(okay)]



APPENDIX B. VACUUM DRIVER SOURCE CODE 83

set n [set map${id}(name)]

# lappend results "$id score=$s moves=$m name=$n $c"

}

}

if { $alive == 0 } break

}

send_user "Final Standings\n"

send_user "[showAll $ids]\n"

# send_user "\nresults:\n[join [lsort $results] "\n"]\n"

send_user "Done (game # $version)\n"



Appendix C

Wumpus Driver Source Code

Following is a version of the driver program that will be used to evaluate
student programs.

#! /usr/bin/expect --

fconfigure stdin -blocking 1

##############################################################

# wumpus driver

puts "Welcome to Wumpus Driver by Don Colton"

##############################################################

proc usage args { puts ""

puts "usage 1: wumpDriver wumpClient wumpClient wumpClient ..."

puts " shows the map and allows direct competition"

puts "usage 2: wumpDriver n wumpClient"

puts " runs one client n times and just reports the results."

puts "optionally include seed=nnnn to seed the random generator."

puts "optionally include width=n to print n across, default is 3."

puts ""; exit }

##############################################################

# agent gets percept: (stench,breeze,glitter,bump,scream)

# . example: n,n,n,n,n (comma separated list of five items)

# . stench means you can smell the wumpus in an adjacent cell

# . breeze means you can tell there is a pit in an adjacent cell

84



APPENDIX C. WUMPUS DRIVER SOURCE CODE 85

# . glitter means there is uncollected gold in the current cell

# . bump means you tried to move forward but ran into a wall and did not move

# . scream means you shot the wumpus and it is now dead and no longer dangerous

# agent must reply with one of (S,shoot,L,left,R,right,A,forward,Q,quit,G,grab)

set sc(Mv) -1 ;# penalty -1 for each action

set sc(Bu) -10 ;# penalty -10 for bumping into the wall

set sc(Sh) -10 ;# penalty -10 for shooting arrow

set sc(Di) -1000 ;# penalty -1000 for death

set sc(Go) 1000 ;# reward +1000 for getting the gold

set sc(RV) 100 ;# reward +100 for each new room visited / explored

set sc(QE) 100 ;# reward +100 for quitting back at the entrance (1,1)

set sc(KW) 100 ;# reward +100 for killing the wumpus

##############################################################

# map() contains all game details in the following form

# map($agent,$xy) is defined where $agent has visited

# map($agent,x) is the x (col) where the agent is, [1-4], initially 1

# map($agent,y) is the y (row) where the agent is, [1-4], initially 1

# map($agent,dir) is the direction agent is facing: [^<v>X] (x if dead)

# map($agent,killed) is defined if wumpus is dead

# map($agent,perc) contains the current percepts

# map($agent,score) contains the score for the agent

# map($agent,shot) is defined if arrow has been shot

# map(b,$xy) is defined where there is a breeze (pit near)

# map($agent,g,$xy) is defined where there is gold

# map(p,$xy) is defined where there is a pit

# map(s,$xy) is defined where there is a stench (wumpus near)

# map(w,$xy) is defined where there is a wumpus

##############################################################

# extract the seed if any

set seed ""; if [regexp {seed=(\d+)} $argv foo seed] {

regsub " seed=$seed " " $argv " " " argv

set argv [string trim $argv] }

# extract the width if any, default to 3

set width 3; if [regexp {width=(\d+)} $argv foo width] {

regsub " width=$width" " $argv " " " argv

set argv [string trim $argv] }



APPENDIX C. WUMPUS DRIVER SOURCE CODE 86

##############################################################

# give names of the agents on the command line

set iter 1; set verbose 1

# puts "argv is ($argv)"

if { [llength $argv] == 2 && [regexp {^(\d+) (.*)} $argv foo iter argv] } {

set verbose 0; puts "Running in Evaluation mode for $iter iterations." }

set count 0; foreach agent $argv {

if ![regexp "/" $agent] { set agent "./$agent" }

if ![file exists $agent] { puts "skipping $agent"; continue }

incr count; lappend agents "a$count"

set map(a$count,name) $agent; set map(a$count,pname) [file tail $agent] }

proc putsv {lvl line} { global verbose; if { $verbose >= $lvl } { puts $line } }

if { $count == 0 } { usage }

proc putsv1 {lvl line} { putsv $lvl $line }

##############################################################

# draw the map showing the board configuration and score:

# each cell lists agent, wumpus, pit, gold (awpg)

# first dot is agent: [^v<>. ]; next wumpus [Ww ]; next pit [P ]; last gold [G ]

##############################################################

# fred says: A

# +----+----+----+----+ +----+----+----+----+ +----+----+----+----+

# |....| | | | | | | | | | | | | |

# +----+----+----+----+ +----+----+----+----+ +----+----+----+----+

# | | | | | | | | | | | | | | |

# +----+----+----+----+ +----+----+----+----+ +----+----+----+----+

# | | | | | | | | | | | | | | |

# +----+----+----+----+ +----+----+----+----+ +----+----+----+----+

# | | | | | | | | | | | | | | |

# +----+----+----+----+ +----+----+----+----+ +----+----+----+----+

# percept x,x,x,x,x

# score: -1

proc show agent { global map

set lines ""; set divider "+----+----+----+----+"

set status "$map($agent,next)>$map($agent,x)$map($agent,y)"

if { $map($agent,dir) == "X" } {

set status "$map($agent,q)$map($agent,moves)" }

if { $map($agent,dir) == "Q" } { set status "Q$map($agent,moves)" }



APPENDIX C. WUMPUS DRIVER SOURCE CODE 87

foreach y "4 3 2 1" { lappend lines $divider

set line "|"

foreach x "1 2 3 4" {

set xy "$x,$y"

set a " "; if [info exists map($agent,$xy)] { set a "." }

if { "$map($agent,x),$map($agent,y)" == $xy } { set a $map($agent,dir) }

set w " "; if [info exists map(w,$xy)] { set w "W"

if [info exists map($agent,killed)] { set w "w" } }

set p " "; if [info exists map(p,$xy)] { set p "P" }

set g " "; if [info exists map($agent,g,$xy)] { set g "G" }

append line "$a$w$p$g|"

}

lappend lines $line

}

lappend lines $divider

set line "$agent $map($agent,score) $status $map($agent,pname)"

lappend lines [format %-21.21s $line]

join $lines "\n" }

##############################################################

proc v args { return 0 } ;# verbosity low

proc v args { return 1 } ;# verbosity high

#-------------------------------------------------------------

# this assumes all block lines are the same length

proc showAll agents {

uplevel { set outputAll ""; set showAllWct 0; set outputLine ""; global width

foreach id $agents { set outputLine [merge $outputLine [show $id]]

if { [incr showAllWct] % $width == 0 } {

lappend outputAll $outputLine; set outputLine "" } }

if { $outputLine != "" } { lappend outputAll $outputLine }

join $outputAll "\n" } }

proc merge {block1 block2} {

set output ""

set max 0; foreach line1 [split $block1 "\n"] {

set len [string length $line1]; if { $len > $max } { set max $len } }

if { $max == 0 } { return $block2 }

foreach line1 [split $block1 "\n"] line2 [split $block2 "\n"] {

lappend output "[format %-${max}s $line1] [format %-21.21s $line2]" }

join $output "\n" }



APPENDIX C. WUMPUS DRIVER SOURCE CODE 88

##############################################################

# subroutines

##############################################################

proc average args {

if { [llength $args] == 1 } { set args [lindex $args 0] }

set sum 0; set count 0

foreach arg $args { catch { set sum [expr $sum + $arg]; incr count } }

if { $count == 0 } { return 0 }

expr 1.0 * $sum / $count }

#-------------------------------------------------------------

# modified from expect’s mkpasswd by Don Libes

proc rand args {

set fileId [open /dev/urandom r]

binary scan [read $fileId 4] i1 number

close $fileId

return $number }

#-------------------------------------------------------------

# pseudo-random number generator

proc randomSeed seed { global RNDseed version

set RNDseed $seed; set version $seed }

proc random15 {} { global RNDseed; # 15 bit int: 0..32767

set RNDseed [expr $RNDseed * 1103515245 + 12345]; # overflows at 32 bits

expr int ( $RNDseed / 65536 ) % 32768 }

proc random {low high} {

expr int ( $low + [random15] * ($high - $low + 1) / 32768) }

#-------------------------------------------------------------

# pick one at random

proc pick args {

if { [llength $args] == 1 } { set args [lindex $args 0] }

lindex $args [random 0 [expr [llength $args] - 1]] }

#-------------------------------------------------------------

# permute a list and return it

proc permute args { set out "";

if { [llength $args] == 1 } { set args [lindex $args 0] }



APPENDIX C. WUMPUS DRIVER SOURCE CODE 89

while { [llength $args] > 0 } {

set nexti [random 0 [expr [llength $args] - 1]];

lappend out [lindex $args $nexti];

set args [lreplace $args $nexti $nexti];

}; return $out;

}

##############################################################

# main program

##############################################################

proc main args { global agents map verbose keep sc

##############################################################

# foreach agent $agents { putsv 0 "agent is $agent" }

# agent is either "<" ">" "^" or "V" to show directionality, or "x" if dead

foreach key [array names map] { if ![regexp "name$" $key] { unset map($key) } }

puts [array get map]

# catch { unset map }

foreach agent $agents {

set map($agent,dir) ">"

set map($agent,x) 1

set map($agent,y) 1

set map($agent,score) 0

set map($agent,moves) 0

set map($agent,perc) "x,x,x,x,x"

set map($agent,next) "@" } ;# "start"

# only show debug lines if there is exactly one agent

if { [llength $agents] != 1 } { proc putsv1 args { } }

##############################################################

set maptype "r"; # stub

if { $maptype == "r" } { global seed

putsv 1 "Generating a Random Map, using seed $seed"

set cells "1,3 1,4 2,3 2,4 3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4"

foreach cell $cells {

if { [random15] % 5 != 0 } continue

set map(p,$cell) 1

regexp {(.),(.)} $cell foo x y

set map(b,$x,$y) 1; # assign breeze

set map(b,$x,[expr $y-1]) 1

set map(b,$x,[expr $y+1]) 1



APPENDIX C. WUMPUS DRIVER SOURCE CODE 90

set map(b,[expr $x-1],$y) 1

set map(b,[expr $x+1],$y) 1

}

set w [pick $cells]; set map(w,$w) 1; # hide the wumpus

regexp {(.),(.)} $w foo x y

set map(s,$x,$y) 1; # assign stench

set map(s,$x,[expr $y-1]) 1

set map(s,$x,[expr $y+1]) 1

set map(s,[expr $x-1],$y) 1

set map(s,[expr $x+1],$y) 1

set g [pick $cells] ;# hide the gold

foreach agent $agents { set map($agent,g,$g) 1 }

}

##############################################################

# debugging information

putsv 2 [lsort [array names map]]

log_user 0; # stop spawned process output from appearing on screen

# start each agent

foreach agent $agents {

putsv 1 "starting $agent $map($agent,name) ($map($agent,pname))"

# if it was open, close it so we can reopen it

if [info exists keep($agent.sid)] { set spawn_id $keep($agent.sid)

# puts "killing $spawn_id $keep($agent.pid)"

# exec kill $keep($agent.pid)

catch { close }

wait -nowait }

# catch { set spawn_id $keep($agent.sid); close; wait -nowait }

set keep($agent.pid) [eval spawn $map($agent,name)]

set keep($agent.sid) $spawn_id

# puts "spawning $spawn_id $keep($agent.pid)"

# calculate the percept: stench,breeze,glitter,bump,scream

set xy "$map($agent,x),$map($agent,y)"

set percept ""

if { [info exists map(s,$xy)] } {

append percept "y," } else { append percept "n," }



APPENDIX C. WUMPUS DRIVER SOURCE CODE 91

if { [info exists map(b,$xy)] } {

append percept "y," } else { append percept "n," }

if { [info exists map($agent,g,$xy)] } {

append percept "y," } else { append percept "n," }

append percept "n,n"; # guaranteed true on first move

set map($agent,perc) $percept

}

puts [showAll $agents]

while 1 {

# wait for dungeonmaster to press enter or type a number

putsv 1 "press ENTER to continue (or enter a number)"

if { $verbose > 0 } { set turns [gets stdin] } else { set turns 1 }

if [regexp {[qx]} [string tolower $turns]] break

# take the number of moves entered, default is 1, not less than 1.

if ![regexp {^[1-9][0-9]*$} $turns] { set turns 1 }

while { $turns > 0 } {

incr turns -1

# give each agent a percept and get its move

set alive 0

foreach agent $agents {

if { $map($agent,dir) == "X" } continue ;# agent died

if { $map($agent,dir) == "Q" } continue ;# agent quit

incr alive; # count remaining players

set spawn_id $keep($agent.sid)

set percept $map($agent,perc)

set det "stench,breeze,glitter,bump,scream" ;# details

putsv1 1 "To $agent: sending percept ($det)=($percept)"

send "$percept\r"

set got "X"; # quit

set timeout 1

# watch for crashes.

if [catch { expect {

-re {^[\r\n]*([^\r\n]+)[\r\n]+} { set got $expect_out(1,string)

set got [string toupper $got]

# debug lines can be printed "# ... \n"



APPENDIX C. WUMPUS DRIVER SOURCE CODE 92

set got [string trim $got]

set pat {^(S|SHOOT|L|LEFT|R|RIGHT|A|FORWARD|Q|QUIT|G|GRAB)$}

if ![regexp $pat $got] {

putsv1 1 "Fr $agent: $got"

exp_continue -continue_timer }

set map($agent,next) $got

putsv1 1 "Fr $agent: $got"

}

timeout { putsv 1 "## $agent ($map($agent,moves)): timeout"

set map($agent,q) "T"; set map($agent,dir) "X" }

eof { putsv 1 "## $agent ($map($agent,moves)): stopped (eof)"

set map($agent,q) "E"; set map($agent,dir) "X" }

} } ] { putsv 1 "## $agent ($map($agent,moves)): died"

set map($agent,q) "D"; set map($agent,dir) "X" }

if { $got == "QUIT" } { set got "Q" }

if { $got == "LEFT" } { set got "L" }

if { $got == "RIGHT" } { set got "R" }

if { $got == "FORWARD" } { set got "A" }

if { $got == "SHOOT" } { set got "S" }

if { $got == "GRAB" } { set got "G" }

set map($agent,next) $got

set x $map($agent,x)

set y $map($agent,y)

set xy "$x,$y"

if ![info exists map($agent,$xy)] {

incr map($agent,score) $sc(RV) ;# reward for each room visited

set map($agent,$xy) 1 } ;# visited

set dirGot "$map($agent,dir)$got"

# we don’t count quitting as an action that costs sc(Mv) points

if { $got == "Q" } {

if { $xy == "1,1" } { incr map($agent,score) $sc(QE) }

putsv 1 "## $agent ($map($agent,moves)): quitting"

set map($agent,q) "Q"; set map($agent,dir) "Q"; continue }

incr map($agent,moves) ;# count the number of moves made

incr map($agent,score) $sc(Mv) ;# penalty for each action



APPENDIX C. WUMPUS DRIVER SOURCE CODE 93

set killed "n"

if { $got == "S" } {

if [info exists map($agent,shot)] continue

set map($agent,shot) 1

incr map($agent,score) $sc(Sh) ;# penalty for shooting arrow

set x $map($agent,x); set y $map($agent,y)

if { $dirGot == "<S" } { while { $x >= 1 } {

if { [info exists map(w,$x,$y)] } {

set killed "y"; break }; incr x -1 } }

if { $dirGot == ">S" } { while { $x <= 4 } {

if { [info exists map(w,$x,$y)] } {

set killed "y"; break }; incr x 1 } }

if { $dirGot == "^S" } { while { $y <= 4 } {

if { [info exists map(w,$x,$y)] } {

set killed "y"; break }; incr y 1 } }

if { $dirGot == "vS" } { while { $y >= 1 } {

if { [info exists map(w,$x,$y)] } {

set killed "y"; break }; incr y -1 } }

if { $killed == "y" } { set map($agent,killed) 1

incr map($agent,score) $sc(KW) } ;# reward for killing wumpus

}

if [info exists map($agent,g,$xy)] {

putsv1 1 "## $agent: gold is here. YESSS!" }

if { $got == "G" } { # did we get the gold?

if [info exists map($agent,g,$xy)] {

unset map($agent,g,$xy) ;# can collect only once

incr map($agent,score) $sc(Go) } ;# reward for gold

}

if { $dirGot == "^L" } { set map($agent,dir) "<"; set dirGot "" }

if { $dirGot == "<L" } { set map($agent,dir) "v"; set dirGot "" }

if { $dirGot == "vL" } { set map($agent,dir) ">"; set dirGot "" }

if { $dirGot == ">L" } { set map($agent,dir) "^"; set dirGot "" }

if { $dirGot == "^R" } { set map($agent,dir) ">"; set dirGot "" }

if { $dirGot == "<R" } { set map($agent,dir) "^"; set dirGot "" }

if { $dirGot == "vR" } { set map($agent,dir) "<"; set dirGot "" }

if { $dirGot == ">R" } { set map($agent,dir) "v"; set dirGot "" }



APPENDIX C. WUMPUS DRIVER SOURCE CODE 94

set bump "n"

if { $dirGot == "^A" } { if { $y == 4 } {

set bump "y" } else { incr map($agent,y) 1 }; set dirGot "" }

if { $dirGot == "vA" } { if { $y == 1 } {

set bump "y" } else { incr map($agent,y) -1 }; set dirGot "" }

if { $dirGot == "<A" } { if { $x == 1 } {

set bump "y" } else { incr map($agent,x) -1 }; set dirGot "" }

if { $dirGot == ">A" } { if { $x == 4 } {

set bump "y" } else { incr map($agent,x) 1 }; set dirGot "" }

if { $bump == "y" } { incr map($agent,score) $sc(Bu) } ;# bump penalty

# in case we moved just now

set x $map($agent,x)

set y $map($agent,y)

set xy "$x,$y"

# calculate the percept: stench,breeze,glitter,bump,scream

set xy "$map($agent,x),$map($agent,y)"

set percept ""

if { [info exists map(s,$xy)] } { set s "y" } else { set s "n" }

if { [info exists map(b,$xy)] } { set b "y" } else { set b "n" }

if { [info exists map($agent,g,$xy)] } { set g "y" } else { set g "n" }

set map($agent,perc) "$s,$b,$g,$bump,$killed"

# did we run into a live wumpus?

if { [info exists map(w,$xy)] && ![info exists map($agent,killed)] } {

putsv 1 "## $agent ($map($agent,moves)): wumpus is here. AAAAAH!" }

if { ![info exists map($agent,killed)] && [info exists map(w,$xy)] } {

incr map($agent,score) $sc(Di) ;# penalty for death

set map($agent,q) "W"; set map($agent,dir) "X" }

# did we fall into a pit?

if [info exists map(p,$xy)] {

putsv 1 "## $agent ($map($agent,moves)): pit is here. AAAAAH!"

incr map($agent,score) $sc(Di) ;# penalty for death

set map($agent,q) "P"; set map($agent,dir) "X" }

}

}

puts [showAll $agents]



APPENDIX C. WUMPUS DRIVER SOURCE CODE 95

if { $alive == 0 } { putsv 1 "All wumpus agents have terminated"; break }

}

set scoreline ""

foreach agent $agents { lappend scoreline "$map($agent,pname)=$map($agent,score)" }

puts [join $scoreline " "]

foreach agent $agents { lappend keep($agent.scores) $map($agent,score) }

}

foreach agent $agents { set keep($agent.scores) "" }

if { $seed == "" } { set seed [rand] }

randomSeed $seed; set seedWas $seed

while { $iter > 0 } { main; incr iter -1 }

foreach agent $agents { if { [llength $keep($agent.scores)] == 1 } continue

puts "$agent average score [average $keep($agent.scores)] - $map($agent,pname)" }

puts "Seed was $seedWas"

putsv 0 "Wumpus Driver Terminating"



Appendix D

Numbers Driver Source
Code

Following is a version of the driver program that will be used to evaluate
student programs.

#! /usr/bin/perl -w

# p2n Testbed

# p2n input is "phonemes" on argv

# p2n output is one line to stdout

if ( @ARGV < 2 ) {

print "** Phoneme to Number Tester **\n";

print "usage: nDriver worker file(s)\n";

print " worker is program to be tested\n";

print " . input is .phn file on standard in\n";

print " . output is one recognized word per line\n";

print " file(s) is a list of test files\n";

print "example: nDriver Don1 ~don/corpus/*\n";

exit;

}

$worker = shift @ARGV; # the student’s program

# foreach file mentioned on ARGV do the conversion

96



APPENDIX D. NUMBERS DRIVER SOURCE CODE 97

# important words

foreach $word qw(

a and double eight eighteen eighteenth eighth eightieth

eighty eleven eleventh fifteen fifteenth fifth fiftieth

fifty first five fortieth forty four fourteen fourteenth

fourth half hundred hundredth nine nineteen nineteenth

ninetieth ninety ninth oh one second seven seventeen

seventeenth seventh seventieth seventy six sixteen sixteenth

sixth sixtieth sixty ten tenth third thirteen thirteenth

thirtieth thirty thousand three triple twelfth twelve

twentieth twenty two zero

) { $vocab{$word} = 1 }

# # maybe words

# foreach $word qw(

# dash hyphen number

# area code

# north south east west

# avenue road street

# o’clock

# ) { $vocab{$word} = 1 }

sub normalize { # text

my ( $txt ) = @_;

$txt0 = $txt; $txt0 =~ s/\n *$//;

$txt =~ s/\n/ /g;

$txt = " $txt ";

$txt =~ s/[.][a-z]+//g; # .bn .ls

# replace <bs:[a-z ]*> with space (background speech)

$txt =~ s/<bs:[a-z ]+>/ /g

$txt =~ s/<[a-z]+>/ /g; # replace <[a-z]*> with space

# delete any utterance that has < > [ ] *

if ( $txt =~ /[^a-z’ ]/ ) {

# print " # txt is ( $txt0 )\n";

return "" }

$txt =~ s/ +/ /g;

$out = " "; foreach $w (split / +/, $txt) {

$out .= "$w " if ( defined ( $vocab{$w} ) ) }

return $out; # format is: " word word word "

}



APPENDIX D. NUMBERS DRIVER SOURCE CODE 98

sub consider {

( $file ) = @_;

$base = $file;

$base =~ s/.phn$//;

$base =~ s/.txt$//;

$base =~ s/.wrd$//;

$base =~ s/.wav$//;

return if -e "$base.p2nX"; # marked as impossible

return if ( $done{$base} ); $done{$base} = 1;

# print "doing $base\n";

# find out what the human transcriber did

$txt0 = ‘cat $base.txt‘;

$txt1 = normalize ( $txt0 );

if ( $txt1 eq "" ) {

$phons = " ";

foreach $line ( split /\n/, ‘cat $base.phn‘ ) {

$line =~ s/[\r\n]+//;

next if ( $line =~ /MillisecondsPerFrame:/ );

next if ( $line =~ /END OF HEADER/ );

if ( $line !~ /^(\d+) (\d+) (.*)/ ) {

print "weird: ($line)\n"; next }

$phons .= "$3 "; }

# print " # phn: ($phons) SKIP\n";

return }

# let the test program do its translation

$res0 = ‘$worker < $base.phn‘;

# ignore output lines that start with # (debug lines)

$res1 = " "; foreach $line ( split /\n/, $res0 ) {

next if ( $line =~ /^#/ ); $res1 .= "$line " }

$res1 = normalize ( $res1 );

$count++; # count this one

if ( $res1 eq $txt1 ) { $okay++;

$ave = 0; if ( $count ) { $ave = 100 * $okay / $count }

$score = sprintf "%4d/%-4d (%.1f%%)", $okay, $count, $ave;

print "$score okay $base ($res1)\n";

return }



APPENDIX D. NUMBERS DRIVER SOURCE CODE 99

print "err $base\n";

# provide the phonemes for convenient comparison

$phons = " ";

foreach $line ( split /\n/, ‘cat $base.phn‘ ) {

$line =~ s/[\r\n]+//;

next if ( $line =~ /MillisecondsPerFrame:/ );

next if ( $line =~ /END OF HEADER/ );

if ( $line !~ /^(\d+) (\d+) (.*)/ ) {

print "weird: ($line)\n"; next }

$phons .= "$3 "; }

print " # phn: ($phons)\n";

print " # tru: ($txt1)\n";

print " # stu: ($res1)\n";

print "###\n$res0\n###\n";

return; # unless you want Keep/Move

print "Keep or Move [Km]: ";

chomp ( $ans = <STDIN> );

if ( $ans eq "m" ) {

print "moving $base to numbers/err/\n";

print ‘mv $base.* numbers/err‘

}

}

$okay = 0; $count = 0;

foreach $arg (@ARGV) {

foreach $file (glob $arg) { consider $file } }

$ave = 0; if ( $count ) { $ave = 100 * $okay / $count }

printf "score: $okay/$count (%.1f%%)\n", $ave;



Appendix E

Test Bank

Test Bank

1: (p.2) What does AI stand for?

2: (p.22) Find p(A ∩B) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

3: (p.22) Find p(A∩B) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

4: (p.22) Find p(A ∩B) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

5: (p.22) Find p(A|B) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

6: (p.23) Find p(A|B) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

7: (p.23) Find p(B|A) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

8: (p.23) Find p(B|A) given p(A)=1/3, p(B)=7/18, p(A∩B)=1/9.

9: (p.23) Find p(A∩B) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

10: (p.23) Find p(A ∩B) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

11: (p.23) Find p(A|B) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

12: (p.23) Find p(A|B) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

13: (p.23) Find p(B|A) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

100



TEST BANK 101

14: (p.24) Find p(B|A) given p(A)=5/6, p(B)=2/3, p(A∩B)=7/12.

15: (p.24) Find p(A ∩B) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

16: (p.24) Find p(A∩B) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

17: (p.24) Find p(A ∩B) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

18: (p.24) Find p(A|B) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

19: (p.24) Find p(A|B) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

20: (p.24) Find p(B|A) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

21: (p.25) Find p(B|A) given p(A)=3/7, p(B)=3/7, p(A∩B)=2/21.

22: (p.27) What is the product rule?

23: (p.27) What is Bayes’ rule?

24: (p.34) Resolve: ( -a c ) ( -b a ) ( -c a ) ( -c b ) ( b c )

25: (p.34) Resolve: ( -a b ) ( -b c ) ( a b )

26: (p.34) Resolve: ( -c -d a ) ( a b d ) ( a c ) ( a c d )

27: (p.34) Resolve: ( -b -c a ) ( -c b d ) ( -d a b )

28: (p.34) Resolve: ( -a d ) ( -b c ) ( -c a ) ( -d a c ) ( a b )

29: (p.34) Resolve: ( -b a ) ( -b a c ) ( -c -d a ) ( a b c )

30: (p.34) Resolve: ( -a -b c ) ( -b -c d ) ( -b a )

31: (p.34) Resolve: ( -a -c b ) ( -a -d c ) ( -b d ) ( -c a b )

32: (p.35) Resolve: ( -c -d a ) ( -d b c ) ( a b ) ( a c d ) ( c d )

33: (p.35) Resolve: ( -a -d c ) ( -d a ) ( a b )

34: (p.57) Discuss: Artificial Intelligence

35: (p.57) Discuss: Turing test

36: (p.57) Discuss: automated reasoning

37: (p.57) Discuss: machine learning



TEST BANK 102

38: (p.57) Discuss: total Turing test

39: (p.57) Discuss: agent

40: (p.58) Discuss: dualism

41: (p.58) Discuss: materialism

42: (p.58) Discuss: logical positivism

43: (p.58) Discuss: algorithm

44: (p.58) Discuss: Godel’s incompleteness theorem

45: (p.58) Discuss: intractability

46: (p.58) Discuss: NP-completeness

47: (p.58) Discuss: machine evolution

48: (p.58) Discuss: genetic algorithms

49: (p.58) Discuss: expert systems

50: (p.58) Discuss: frames

51: (p.58) Discuss: rational agent

52: (p.58) Discuss: autonomous agent

53: (p.58) Discuss: simple reflex agent

54: (p.58) Discuss: goal-based agent

55: (p.58) Discuss: utility-based agent

56: (p.59) Discuss: accessible environment

57: (p.59) Discuss: deterministic environment

58: (p.59) Discuss: episodic environment

59: (p.59) Discuss: static vs dynamic environment

60: (p.59) Discuss: discrete vs continuous environment

61: (p.59) Discuss: search



TEST BANK 103

62: (p.59) Discuss: path cost

63: (p.59) Discuss: breadth-first search

64: (p.59) Discuss: uniform-cost search

65: (p.59) Discuss: depth-first search

66: (p.59) Discuss: depth-limited search

67: (p.59) Discuss: iterated deepening search

68: (p.59) Discuss: bidirectional search

69: (p.59) Discuss: heuristics

70: (p.59) Discuss: best-first search

71: (p.59) Discuss: greedy search

72: (p.60) Discuss: A* search

73: (p.60) Discuss: admissible heuristic

74: (p.60) Discuss: knowledge representation

75: (p.60) Discuss: inference (sound, complete)

76: (p.60) Discuss: propositional logic

77: (p.60) Discuss: first-order logic

78: (p.60) Discuss: atomic sentence

79: (p.60) Discuss: predicate

80: (p.60) Discuss: quantified sentence

81: (p.60) Discuss: situational calculus

82: (p.60) Discuss: diagnostic rules

83: (p.60) Discuss: causal rules

84: (p.60) Discuss: unification

85: (p.60) Discuss: Modus Ponens



TEST BANK 104

86: (p.60) Discuss: Horn form

87: (p.60) Discuss: resolution

88: (p.61) Discuss: conjunctive normal form

89: (p.61) Discuss: implicative normal form

90: (p.61) Discuss: conditional plans

91: (p.61) Discuss: execution monitoring

92: (p.61) Discuss: action monitoring

93: (p.61) Discuss: replanning agent

94: (p.61) Discuss: prior probabilities

95: (p.61) Discuss: conditional probabilities

96: (p.61) Discuss: joint probability distribution

97: (p.61) Discuss: Bayes’ rule

98: (p.61) Discuss: conditional independence

99: (p.61) Discuss: Bayesian updating

100: (p.61) Discuss: belief networks

101: (p.61) Discuss: stochastic simulation

102: (p.61) Discuss: truth-functional system

103: (p.61) Discuss: performance element

104: (p.62) Discuss: learning element

105: (p.62) Discuss: inductive learning

106: (p.62) Discuss: neural network

107: (p.62) Discuss: perceptron

108: (p.62) Discuss: linearly separable function

109: (p.62) Discuss: feed-forward network



TEST BANK 105

110: (p.62) Discuss: back-propagation

111: (p.62) Discuss: Bayesian learning

112: (p.62) Discuss: multi-layer feed-forward network

113: (p.62) Discuss: speech act

114: (p.62) Discuss: phrase-structure grammar

115: (p.62) Discuss: context-free grammar

116: (p.62) Discuss: encoded message

117: (p.62) Discuss: situated language

118: (p.62) Discuss: augmented grammar

119: (p.62) Discuss: pragmatic interpretation

120: (p.63) Discuss: disambiguation

121: (p.63) Discuss: anytime algorithm

122: (p.63) Discuss: bounded optimality

123: (p.63) Discuss: prisoner’s dilemma



Index

a priori probabilities, 27
ACM, 64

bake off, 38
basis, 52
Bayes’ rule, 26

CNF, 31, 33
complementary literals, 32
conjunction, 21, 31–33
conjunctive normal form, 33
CSLU, 49

disjunction, 21, 31, 33

email, 5

first order logic, 30

IEEE-CS, 64
induction, 52

modus ponens, 31

numbers, 48

over training, 53

percept, 40
phonemes, 48
Predicate Calculus, 30
prior probabilities, 27
probability, 18
product rule, 26
Propositional Logic, 30

resolution, 31
Robinson, John Alan, 31
rules of inference, 30

syllogisms, 31

tautology, 32

vacuum, 39
Venn diagram, 19, 22

Wumpus, 44

106


	Introduction
	Syllabus Extracts
	Readings
	Conditional Probability
	Bayesian Probability
	Propositional Resolution
	Projects in General
	Vacuum
	Hunt the Wumpus
	Number Recognition
	Exam Topics
	CC2001: Intelligent Systems
	Vacuum Driver Source Code
	Wumpus Driver Source Code
	Numbers Driver Source Code
	Test Bank
	Index

