
CS 301 – Algorithms and Complexity

Course Syllabus and Calendar – Winter 2006

Professor Don Colton

Brigham Young University Hawaii

CS 301 serves a crucial role in the CS curriculum.
It stands at the middle, as a keystone to your prepa-
rations in lower classes, and as a gatekeeper to the
upper classes.

1 Course Overview

The study of algorithms is focused primarily on
speed. One can always buy more memory or a big-
ger hard disk. It just costs money. One cannot buy
time.

The issues with speed revolve around the ques-
tion of how best to approach each problem. Ar-
ray search is a wonderful example. The brute-force
lookup method examines each item in a set and
stops when the desired item is found. Binary search
divides the set into two halves and decides in which
half the target would be. Then it repeats this pro-
cedure until the set has just one item left. At one
second per comparison, and with a set of one million
items, the brute-force method would take 11.5 days
to find that the target is not in the set. The binary
search method would take only about 20 seconds.
For a large enough set, it is clear to see that even
the fastest computer using the brute-force method
cannot win against an ordinary computer using the
binary search method.

The study of algorithms examines the running
time of various programs and looks at some impor-
tant algorithmic discoveries, such as the divide-and-
conquer method used by the binary search. Stu-
dents will gain skills in both algorithm analysis
and algorithm design, and probably gain a few
surprising insights along the way.

Prerequisites: Object-Oriented Programming
(CS 202) is a prerequisite. For this class we
expect you to have programming maturity based
on programming experience. OO Programming
reflects a desired level of maturity.

Discrete Math II (Math 202/L) is a prerequisite.

In the discrete math classes you will have learned
about trees, graphs, and other data structures and
algorithms that are common in Computer Science.
When we refer to these same concepts in CS 301,
we will expect you to understand them already, or
to (re)learn them rapidly.

1.1 The Course

• Course Number: CS 301
• Title: Algorithms and Complexity
• Course Description: Algorithmic analysis,

strategies, fundamental algorithms, distributed
algorithms, basic computability. (Prerequi-
sites: CS 202, Math 202/L.)

• Textbook: Introduction to Algorithms, 2/e,
by: Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. McGraw
Hill, 2001. ISBN: 0-07-013151-1.

• Class Time: MWF 12:00–12:50 PM
• Final Exam: Mon 24 Apr, 11:00–2:00 PM
• Classroom: GCB 153

1.2 The Instructor

• Instructor (me): Don Colton
• My email: don@colton.byuh.edu
• My Office: GCB 130 B
• Office Hours: Daily 11:00 to 11:50 AM

1.3 My Office Hours

My office hours are shown above. You can contact
me by email to make an appointment at another
time. I also have an open-door policy: If my door
is open (even just a bit) feel free to knock
and come in. (My door is usually open.)

1.4 Subject to Change

It is possible that I will revise some aspects of the
course as we go along. Any changes I make are likely



to be to your advantage. If any of my changes seems
unfair to you, let me know. I will try to correct it.

1.5 Special Needs

Brigham Young University Hawaii is committed
to providing a working and learning atmosphere,
which reasonably accommodates qualified persons
with disabilities. If you have any disability that
may impair your ability to complete this course suc-
cessfully, please contact the students with Special
Need Coordinator, Leilani A’una at 293-3518. Rea-
sonable academic accommodations are reviewed for
all students who have qualified documented disabil-
ities. If you need assistance or if you feel you have
been unlawfully discriminated against on the basis
of disability, you may seek resolution through estab-
lished grievance policy and procedures. You should
contact the Human Resource Services at 780-8875.

1.6 Preventing Sexual
Harassment

Title IX of the education amendments of 1972 pro-
hibits sex discrimination against any participant in
an educational program or activity that receives fed-
eral funds, including Federal loans and grants. Ti-
tle IX also covers student-to-student sexual harass-
ment. If you encounter unlawful sexual harassment
or gender-based discrimination, please contact the
Human Resource Services at 780-8875 (24 hours).

2 Course Calendar

Generally the lectures and discussion in class will
precede the due dates for the various assignments
(shown below).

xxx xx: sSeq REQ sequential search
xxx xx: sBinary REQ binary search
xxx xx: sSelect REQ selection sort
xxx xx: sInsert REQ insertion sort
xxx xx: sBubble REQ bubble sort
xxx xx: sMerge REQ merge sort
xxx xx: sHeap REQ heap sort
xxx xx: sQuick REQ quick sort
xxx xx: stack REQ stack
xxx xx: queue REQ queue
xxx xx: hash1 REQ hash (single)
xxx xx: hash2 REQ hash (double)
xxx xx: pq REQ priority queue
xxx xx: bst REQ binary search tree
xxx xx: lcs1 longest common subseq
xxx xx: huffman Huffman Coding

xxx xx: bfs REQ breadth first search
xxx xx: idfs iterative depth first
xxx xx: mst minimum spanning tree
xxx xx: vexed1 Vexed basics
xxx xx: vexed2 Vexed max 4 solver
xxx xx: lcs2 LCS list of options
Apr 24: final 11-2, in class

3 Quizzes

Several quizzes have been developed to test your
knowledge and skill. You must demonstrate mas-
tery by earning a perfect score on each quiz. Each
quiz is available online at quizgen.org. Before the
quiz is given in class, you must practice outside
of class until you earn a perfect score. Then the
quiz will be given twice in class. I will keep your
highest score. Once you pass a quiz perfectly, you
do not need to take it again. The quizzes cur-
rently include Big Oh, Recurrence relations, Heap-
sort heapify, Quicksort partition, Double hash probe
sequence, Longest common subsequence, Huffman
coding, and Minimal spanning tree. Others are
planned, including Shortest paths and Maximum
flow.

4 Grading

Because of the nature of CS 301, as a prerequisite to
almost all the classes that follow, there will not be
any D grades. If you do not reach a sufficient level
of demonstrated skill and performance, you will re-
ceive an F, not a D. That is to force you to retake the
class until you do demonstrate the expected level of
performance. You cannot earn a D in this class by
attending and appearing to work hard.

To pass the class:
(1) you must do reasonably well at demonstrating

how the studied algorithms function. That means,
for example, that I can give you a list of numbers
and tell you to heapify them. In all such cases we
will do mini-quizzes in class to cover that material
so you are familiar with it for the exam. Typically
everyone does well enough in this category to pass
the class. Most will probably do well enough for an
A in this category.

(2) you must do reasonably well at demonstrat-
ing that you know the terminology used in the book
and lectures. You show this by writing short para-
graphs describing specific terminology, telling why
it is significant, what it means, how it is used, or
something like that. Each major exam will have
questions of this type.



(3) you must do reasonably well at completing
the labs, and especially the ones assigned early in
the semester. In particular, the labs labeled REQ
(required): both search labs, all six sort labs, stack,
queue, hash1, hash2, p1, bst, and bfs must be com-
pleted to pass the class. If you get that far, you
can expect at least a C in the class, as far as labs
are concerned. Additional labs including lcs1 and
beyond will help me decide whether you earn an A,
B, or C. This is the category that will be the most
trouble for the most students.

(4) you must submit a reasonably good sort re-
port. If you do not turn one in, you fail the class.
The quality is negotiable, and will divide students
into A, B, and C categories.

Aside from all that, grades will be computed on
the basis of points earned generally as follows.

ceil avail req category
100 4*42 0 daily classwork
375 375 375 required labs (must do all)
500 600 400 all programming labs
100 100 60 sort report
300 300 180 midt, final

1000 700 total

In each category, you must reach the “req” re-
quired minimum to avoid failing the class. In
some categories (classwork and labs) there are more
points available than you can keep (the ceiling).
This gives you the option of skipping a certain num-
ber of assignments without it hurting your grade.
For example, in the daily classwork category, at four
points per day, after 25 days you have full credit in
that category. In the programming labs category,
you can skip 100 points of labs and still get full
credit (500) for that category.

Grading Scale: I use the following grading scale
for this class.

930+ A 900–929 A- 870–899 B+
830–869 B 800–829 B- 770–799 C+
730–769 C 700–729 C- 0–699 F

Final Exam Score: You must achieve a sufficient
score on the final exam, as shown in this table. Your
final grade will be the lower of your total-points
grade (above) and the grade in this table based on
your final-exam percentage.

83+ A 80–82 A- 77–79 B+
73–76 B 70–72 B- 67–69 C+
60–66 C 50–59 C- 0–49 F

Attendance: Attendance counts for 10% of your
final grade. Attendance is worth 4 points per day:
full credit for attending the full class period; partial
credit for attending part of the class period. Missing
and unnoticed persons get zeros.

Due to INS (immigration) and VA (veterans) re-
quirements the Vice President for Student Life is
supposed to be notified whenever a student misses
four consecutive class days. I try to do this.

In class I follow a general “got questions?” teach-
ing philosophy. It leaves the responsibility for learn-
ing with the people that are supposed to learn: the
students. (I cannot learn for you.) Canned lectures
can be fun and exciting, but frequently the relevant
material is in the reading. Our class time will be
focused on things you need to do the nearby as-
signments, or on explaining things that may not be
sufficiently clear from the reading.

Reading: I am using Introduction to Algorithms,
second edition by Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest, and Clifford Stein. Mc-
Graw Hill, 2001. ISBN: 0-07-013151-1.

I will occasionally assign chapters to be read. The
chapters will also be discussed in class.

Labs/GradeBot: Some of your time will be
spent writing programs. They will be graded by
my robotic grader, GradeBot. GradeBot is gener-
ally available 24 hours a day, seven days a week,
to grade and return your lab assignments. This is
currently done via web, “turnin,” or email.

For grading, GradeBot is correct and authorita-
tive. It is your boss. It is your client. It is your
Drill Sergeant. There is always a particular correct
behavior that it demands. You must make your pro-
gram behave in exactly the way that GradeBot is
requiring (including spelling errors, if any). Be sure
to look at a sample “conversation” with GradeBot
before you start writing your program.

If you discover a case where you believe that
GradeBot is wrong, tell me about it. If you found an
error in GradeBot, I generally reward you with some
extra credit. Otherwise, you must assume GradeBot
is right.

Sort Report: A term paper is required. It is
called the Sort Report. After you have programmed
several sorts, including insertion, selection, heap,
merge, and quick, you will do empirical measure-
ments of performance and write a report about it.
Detailed instructions are provided.



5 Course Content

The CS 301 course covers the following CC2001
Knowledge Units. These are defined in Comput-
ing Curricula 2001, a joint project of IEEE-CS and
ACM. The IEEE Computer Society and the Associ-
ation for Computing Machinery are the two major
professional societies in computer science.

AL1. Basic algorithmic analysis

• Asymptotic analysis of upper and average bounds
• Differences among best, average, and worst case
• Big O, little o, Ω (omega), and Θ (theta) notation
• Standard complexity classes
• Empirical measurements of performance
• Time and space tradeoffs in algorithms
• Using recurrence relations to analyze algorithms

AL2. Algorithmic strategies

• Brute-force algorithms
• Greedy algorithms
• Divide-and-conquer
• Backtracking
• Branch-and-bound
• Heuristics
• Pattern matching and string/text algorithms
• Numerical approximation algorithms

AL3. Fundamental computing algorithms

• Simple numerical algorithms
• Sequential and binary search algorithms
• Quadratic sorting algorithms (selection, insertion)
• O(n lg n) sorting alg (quick-, heap-, merge-)
• Hash tables, incl collision-avoidance strategies
• Binary search trees
• Representations of graphs (adjacency list, matrix)
• Depth- and breadth-first traversals
• Shortest-path algorithms (Dijkstra and Floyd)
• Transitive closure (Floyd’s algorithm)
• Minimum spanning tree (Prim and Kruskal)
• Topological sort

AL4. Distributed algorithms

• Consensus and election
• Termination detection
• Fault tolerance
• Stabilization

AL5. Basic computability

• Tractable and intractable problems
• The halting problem


