
Using a MySQL Database

Professor Don Colton, BYU Hawaii

May 23, 2005

In this course, we will learn to use an SQL database
system called MySQL. The programming interface we
will learn also applies to other database engines, such
as Oracle. We are using MySQL because it runs fast
and is essentially free, so you can run it on your own
machine at home if you desire.

1 Working by Hand

There are two main ways to work with a database.
First, we will show how to work with it by hand. Sec-
ond, we will show how to work with it from another pro-
gram. In the long run, you will do most of your database
work using another program that you will write, such as
a CGI program. When you are debugging, or when you
are doing one-time kinds of things like creating tables,
working by hand can be a good solution.

1.1 Connect to the MySQL Server

Use this command (e.g., from cs.byuh.edu) to connect
to MySQL.

mysql -p -h HHH -u UUU DDD

Replace HHH with the host name. Replace UUU with
your own username. Replace DDD with your database
name. When you are prompted for a password, type
it in. Your instructor should tell you your hostname,
username, and password. You can change your pass-
word later.

The -p tells mysql to prompt you for a password.

The -h tells mysql to what hostname to connect to.

The -u tells mysql what username to use.

The DDD at the end of the line is optional, and tells
mysql what database to use. If you do not specify it
here, you must specify it later with a “use” command
as shown below.

1.2 How To Quit

Once you have successfully connected to the mysql
server, you should see the following prompt:

mysql>

This means that the mysql server is waiting for you to
enter a command. The first command we will enter is
exit, so that we will know how to quit when we are
done. quit also works.

mysql> exit

1.3 A Few Alerts

Pay attention to capital and lower-case letters. On some
platforms big and little letters are interchangable, so
“DonC” and “donc” are treated the same. This is called
“case insensitive.” On other platforms the big and little
letters are distinguished, so “DonC” and “donc” are
different. This is called “case sensitive.” Be aware of
the difference.

MySQL is not case sensitive, so name your tables and
rows with that in mind. However, perl is case sensitive,
so within any programs you write be consistent in how
you capitalize things.

The up-arrow is your friend. Press it several times.
Press the down-arrow several times. Try the other ar-
row keys (left and right). When you have a line looking
the way you want it, you can press ENTER from any-
place in the line. You do not need to be at the end of
the line. Using these keys will speed up your work.

1.4 Change Your Password

The following command allows you to change your pass-
word to something you like better. The quotes, equal
sign, parentheses, and semi-colon are all required as
shown.

mysql> set password = password("whatever");

Change your password. Type exit; to quit. Then log
back in using the new password.

There is actually no need to change your password for
this class. If you want, you can. When you are doing
a real project, you will probably want to pick your own
password.

Avoid using any of your existing passwords. This is
because your mysql password is going to end up in your
programs, right in plain text. People may see it, so you
may want to make it hard to remember. I recommend
you invent something totally random, like “vlksH36E.”
Nobody will guess that. Even if they see it, nobody will
remember it. And you will hardly ever need to type it
in. Probably you can cut and paste.

Certain characters can cause difficulty in a password (or
a table name, for that matter). Characters to avoid in-
clude space, backslash (\), at (@), dollar ($), and quote
("). There may be others. These characters are “meta-
characters” or “escape characters” which means that
they have a special meaning. They escape from the
normal meaning. For instance, when we print “\n” we
do not expect to get a backslash and an n. We expect
to get a newline. The backslash is special. Now that
you have been warned, I will admit that you can use
these special characters, but it requires extra care. For
most people it is easier to avoid them.

1.5 SQL Commands

Here is a quick overview of the main SQL commands
you should know. are other commands, but these are
the most important for you at this time, either because
you will need to use them, or because they appear on a
test you will take.

alter Modify the structure of a table.
create Make a new table.
delete Delete existing row(s) from a table.
drop Remove existing database from mysql.
drop Remove existing table from database.
grant Extend rights to a user.
insert Add a new row into a table.
order Specify the return sequence of rows.
select Get rows of information from a table.
show List the tables in a database.
update Change existing contents of a table.
where Limit a query to certain rows.

1.6 What Databases Exist?

See what databases exist on this “host.” Use the follow-
ing command. It should give you a list of the databases
that currently exist and that you are permitted to see.

There may be other databases that you do not have the
rights to see.

mysql> show databases;

1.7 Creating a Database

In this course, you will not need to do this, but later
you may want to set up your own server and databases.
Here are the commands to create a database and to
grant access rights to a user.

mysql> create database DDD;
mysql> grant all on DDD.* to UUU

-> identified by "PPP";

In this example, DDD is the name of the database. UUU
is the username, which is limited to 16 characters. PPP
is the password. Apparently a user can only have one
password, so if you issue the command again with a
different password, the first password is replaced.

Notice the grant command was split over two lines.
When mysql did not find a semi-colon (;) at the end
of the grant line, it prompted for more input using ->
instead of mysql>. When you get a -> prompt unex-
pectedly, maybe type a semi-colon and press enter.

1.8 Focus on Your Database

When you arrive in mysql, the instructor will have al-
ready granted you all rights within your own database.

If you did not specify a database when you connected,
you will need to do so now. Tell mysql to focus on your
database by typing the following command:

mysql> use DDD;

where “DDD” is replaced by the name of the database
assigned to you. mysql should then respond with
“Database changed.” Notice that in most commands,
a semi-colon (“;”) is required after the command. On
this command the semi-colon seems to be optional.

1.9 Databases Contain Tables

You will be working with tables within your database.
You can see a list of the existing tables by using this
command:

mysql> show tables;

Initially there should be nothing there. You should see
a message saying something like “Empty set.”

1.10 Create a Table

Create a table by doing something like this:

mysql> create table scores (
-> student varchar(50),
-> score int(6)
->);

In this example, scores is the name of the table. It
has two columns. One is called student and can hold
a string of up to 50 characters. The second is called
score and can hold a number up to nine digits, with a
default printing width of six digits.

You can put that command all on one line if you like,
or spread it out over multiple lines like shown above.
mysql will continue prompting you for the remainder of
your command until you put in the semi-colon “;” to
tell it that you are done.

Now show tables again. You should see your new table.

1.11 Column Data Types Allowed

In our example above, we created a table with two
columns: student and score. Student was followed by
the note “varchar(50)” and score was followed by the
note “int(6)”. Varchar and int are called data types or
column types. Here is a more complete sample of the
column types allowed in mySQL. For a complete list,
consult the mySQL book.

tinyint -128 .. 127 (one byte)
smallint -32768 .. 32767 (two bytes)
mediumint -8388608 .. 8388607 (three bytes)
int 9 digits (four bytes)
bigint 20 digits (eight bytes)
float like C, four bytes
double like C, eight bytes
decimal(m,d) string, m+2 bytes
char(m) string, m bytes
varchar(m) string, 1 to m+1 bytes
tinytext up to 256 bytes
text up to 65536 bytes
date YYYY-MM-DD, three bytes
time hh:mm:ss, three bytes
datetime eight bytes
timestamp four bytes (auto updating)
year one byte

1.12 Enter Data into Your Table

Insert something into your table by using commands
like these.

insert into scores values ("Fred", 100);
insert scores values ("Bob", 70);
insert into scores (score, student)
values (95, "Anne");

insert scores set student="Don", score=75;

1.13 Display the Data in Your Table

See what you have in your table by using a command
like this. Star (*) lists all columns in the default order,
but you can assert more control if you want.

mysql> select * from scores;
mysql> select student from scores;
mysql> select score from scores;
mysql> select student, score from scores;
mysql> select score, student from scores;

You can also control the order in which your information
is returned.

mysql> select * from scores order by score;

1.14 Think Beyond the Example

Invent your own table with three or more columns. In-
sert into it three or more rows. Be creative. When you
have your table built and populated, do a “select *” on
the table and show your instructor. (Table names and
column names do not allow spaces.)

2 Working by Program

The previous section told how to work with a database
by hand. In this section, we show how to work with
it from another program. We will illustrate using the
Perl DBI (data base interface). We will not show you
everything that is possible. Instead, we focus on a few
simple commands that will allow you to do some inter-
esting things.

2.1 Connect to MySQL

In your Perl program, you can use the following lines
to connect to and disconnect from a MySQL database.
You are telling the computer the same things you had
to specify by hand (in the section above) when you con-
nected to MySQL. The difference is that this protocol
is easier for programming, and the by-hand protocol is
easier for humans.

use DBI; # to include needed definitions
$db = "DDD";
$host = "HHH";
$username = "UUU";
$password = "PPP";
$x = DBI->connect("DBI:mysql:$db:$host",
$username, $password, {RaiseError=>1});

Of course, you should replace DDD, HHH, UUU, and PPP
with the correct information. If your host is the “local-
host” you can leave that part off from the connect state-
ment. RaiseError is an example of information you can
send as part of the connect process. If the connect fails,
$x will be false. You can say if($x) to test whether
the connection worked.

After connecting, you can access any of the tables and
data in the database. When you are done, you should
disconnect as follows.

$x->disconnect(); # when you are done

2.2 Issue a Query

When you are connected to the database, you can issue
queries (inquiries, requests, commands). Data retrieval
is probably the most common activity. There is a four-
step process for retrieving data from a table. The first
two steps are prepare and execute.

$query = "select * from inv"; # or ...
$query = "select * from inv order by cost";
$y = $x->prepare($query); # introduce task

if (!$y) { die "query failed\n" }
$y->execute(); # carry out the task

Replace inv with the actual name of your table. It is
scores in the examples above.

2.3 Viewing Results

If your query creates results (like select does), then
after you have executed the query, the results are ready
for you to process. You can fetch the results one row at
a time. If there are many rows of output, you need to
do this in a loop so you can fetch each of them. Here
are two ways to get the data from each row. In the
first way, we retrieve all the columns for one row into
an array.

while (@z = $y->fetchrow_array()) {
print $z[1]; # print the second column
($xxx, $yyy, $zzz, $frog) = @z;
print $frog; # print the first column

}

Of course, the names $xxx, etc. can be whatever vari-
able names you wish to use. In the second way, we
retrieve all the columns into a hash. Columns are iden-
tified by their formal name within the table.

while ($z = $y->fetchrow_hashref()) {
print $z->{price}; # print price column

}

After processing the rows we want, we can end at any
time.

$y->finish(); # when done with this query

2.4 Display Your Data

Write a program that displays the rows from the table
you created earlier. Connect. Query. Display results.
Disconnect. Quit. At first, do not worry if your data
do not line up neatly. But do separate them by at least
a few spaces so they don’t run together.

To make your data line up in neat columns, you can use
the \t tab character (a quick and dirty solution), or you
can format the data to a specific width, using printf.
Here is an example.

$format = "student: %-20s score: %5.0f\n";
printf ($format, $student, $score);

2.5 $x and $y ??

In the previous discussion, we introduced some “ob-
jects” that are used to access the data and carry out
queries. They were called $x and $y. This section
briefly explains what they are and how they are used.

Imagine you are shopping at Amazon.com. You sit
down at a computer, start your browser, and type in
the Amazon url. Then you start shopping. You have a
“shopping cart.” When you find something you want,
you add it to your cart. Eventually you pay and check
out, or you abandon the cart.

Now imagine that while you are shopping, you move to
another computer, surf over to Amazon, and check your
shopping cart. Will you see the things that you picked
on the first computer? Probably not. Thousands of
people are shopping Amazon at any moment. They
each have their own shopping cart.

$x is like that shopping cart. When you connect to a
database, you get back a ticket ($x). Every time you
want to add to your shopping cart, or remove from it, or
pay for it, you need to identify your shopping cart. You
need to say “$x->prepare” rather than just “prepare”.
$x represents the shopping cart.

When shopping at Amazon, you can actually have two
or three shopping carts by using different computers, or
even by starting another browser window on the same
computer. When accessing a database, you can have
several sessions going at the same time:

$x1 = DBI->connect(...);
$x2 = DBI->connect(...);
$x3 = DBI->connect(...);

Each of these connections has its own $x, its own shop-
ping cart, so to speak. You can use one to do one thing
while you use another to do something else. One could
be connected to an automotive parts warehouse while
another is connected to a credit card processing facility
and a third is connected to a customer database.

3 Advanced Queries

Here is some additional information you may find useful.

3.1 Updating a Row

You will need an update query. In this example,
mystuff is a table name, desc is the column to be
changed, yadda is a new value, and ID is the column
to be matched.

update inven set desc="yadda" where ID=37;
update inven set desc="yadda"
where ID=37 and price=33.91;

update inven set desc="yadda", price=99.99
where ID=19;

update inven set qty=qty-1 where ID=19;

3.2 Deleting a Row

You will need a delete query. In this example,
inventory is a table name, ID is the column to be
matched, and 99 is a value. If you leave off the “where”
part, all rows in your table will be deleted.

delete from inventory where ID=’99’;
delete from inventory where ID like ’201%’;
delete from inventory where cost=price;

3.3 How to Add a Column

To modify an existing table, use the alter table
query. Here are some samples of things you can do:

alter table foo add price int after cost;
alter table bar change price float;
alter table bletch drop cost;

3.4 How to Delete a Table

To delete a table, use the drop table query.

drop table bletch;

4 Doing More

If you wish to go beyond this short introduction to
database you may want to buy these books.

• Recommended: MySQL, by: Paul DuBois. New
Riders press. ISBN 0-7357-0921-1. SRP $49.99.

• Alternate: Programming the Perl DBI, by: Al-
ligator Descartes and Tim Bunce. O’Reilly press.
ISBN 1-56592-699-4. SRP $34.95.

“MySQL” is more expensive, but really covers both
SQL and the Perl DBI well. I recommend it highly.
I think both are available in the bookstore in the text-
book section under IS 431.

