
A Quick Guide to Big Oh

Professor Don Colton

Brigham Young University Hawaii

1 What Are We Trying To Do?

The amount of collected data in the world gets bigger
every day. Credit card transactions. Log files. Web
hits. Customer lists. Bigger. More.

One programming challenge is to build systems
that do not fall to their knees under the weight of
higher speeds and bigger transaction counts. We
want systems that are robust, systems that degrade
gracefully rather than collapse and melt down.

“Big Oh” analysis is that branch of computer sci-
ence that measures program performance by simply
looking at the program itself. There is a lot one can
tell by looking at the code. We cannot easily mea-
sure the actual speed in seconds, but we can tell
whether doubling the input will double the running
time, or whether things will be worse or better.

There are some algorithms that are more work to
program, but give a faster program. Programmers
must choose the best approach to their task, given
what they know of the future loads their program
must support.

2 Introduction

“Big Oh” is the popular name for running-time anal-
ysis of algorithms. It is generally acknowledged that
although you can buy more memory or a faster CPU
chip, these things will not save you if you are running
an inefficient algorithm. Computer Science students
learn this material (and more) in their introductory
courses. It is helpful for IS students to also have a
grasp of the basic terminology and to have the abil-
ity to measure (in Big Oh fashion) the running time
of various programs.

The words “Big Oh” have reference to “on the
Order of,” or “Order of magnitude.” Specifically
it is applied to running times of programs. As the
input grows, what happens to the running time of
the program?

The phrase “Big Oh” itself is used loosely here.

Precisely it means that the algorithm runs at least
that fast. Theta (Θ) is a more precise term used
in Computer Science, but we will use somewhat less
precise but much more familiar terminology, making
“tight big oh” technically equivalent to “theta.”

3 n Times As Much Input

We want to know what happens to the running time
of our program if we get n times as much input data.
For each algorithm, just by looking at the program
code, we can come to some reliable conclusions. We
imagine n to be really large. Thousands. Millions.
Billions.

3.1 Typical Algorithms

In this section we talk about some typical algorithms
and tell what their big oh running time would be.

3.2 Constant-Time Algorithms

An example of a constant-time algorithm would be
one to pick the first number from a list. It does not
matter how long the list is. In one step we can pick
the first number and then stop.

If we have n times as much input, the running
time does not change. Or, it “changes” by a factor
of one. When the running time does not change, we
say the algorithm is Θ(1), “theta one,” “big oh one,”
or constant.

A real-life example would be selecting a new em-
ployee by taking the first application on the pile. It
would not matter how many applications were on
the pile.

(On my Big-Oh quizzes, simple statements run in
Θ(1) time. That is why they are called simple.)

Constant-time algorithms are the best possible al-
gorithms, unless that time is very long.



3.3 Linear-Time Algorithms

Let’s say we want to find the biggest number in a
list, when the list is in unpredictable order. To find
the biggest number, we must look at each entry in
the list.

If we have n times as much input, the running
time is n times longer. Such an algorithm is called
Θ(n), “theta n,” “order n,” or “linear.”

Linear algorithms are very common in IS program-
ming, and are generally accepted as being efficient,
unless there is a known way to do the job faster.

3.4 Logarithmic-Time Algorithms

Logarithmic algorithms have running times that
grow more slowly than the size of the input. Dou-
ble the input and the running time only gets a little
longer. It does not double.

The classic example of a log-time algorithm is bi-
nary search. Take the (in)famous “guess my num-
ber” game. In this game, I think of a number and
you must guess it. On each turn, you make a guess
and I tell you whether you are too high, too low, or
just right. If my number is between 1 and 100, your
first guess may be 50. By guessing 50, you cut in
half the number of remaining possibilities. Say my
number is 78, but you don’t know that. You say 50.
I say higher. You say 75. I say higher. You say 88.
I say lower. You say 81. I say lower. Each step you
narrow the possibilities by half (roughly).

In this game, if we were to double the initial range,
making it between 1 and 200, would it take you twice
as many guesses? No. One extra guess at the front
would determine whether it was above or below 100.
From there, we are back to the same original chal-
lenge.

If we have n times as much input (meaning n times
as many numbers to search), it will take us log2 n
steps before we get down to the original input size.
Algorithms that run in log time are said to have a
running time of Θ(lg n), “theta log n,” “big oh log
n,” or simply “log n.”

3.5 Root-n-Time Algorithms

Root-n algorithms run in time proportional to the
square root of n (the input size). An example would
be finding whether a number n is prime. To be
prime, a number must not be the mathematical re-
sult of multiplying too smaller numbers. To find if
a number is prime, we can test all the smaller num-
bers to see if they divide exactly into n. But there

is a trick. If n is 101, we can stop when we have
tested 10, because if 11 goes in, then 101 = 11 * a,
and a must be smaller than 11. But since we have
tested all the numbers smaller than 11, we can quit.
Without even trying it, we know 11 could not work.
Such an algorithm would have running time Θ(

√
n),

or “root n.”

3.6 Exponential-Time Algorithms

If you are just preparing for the quiz, you can skip
this section. There are no exponential-time algo-
rithms on the quiz.

Just as logarithmic algorithms are not much af-
fected by a doubling of the input, there are other
algorithms that may work well up to a point, but
then the running time seems to explode.

The classical example of an exponential algorithm
is the “Traveling Salesman Problem” (TSP). This
problem is much studied in theoretical computer sci-
ence. The task is simple. Given n cities, a traveling
salesman must visit each exactly once before return-
ing home. The goal is to do it the fastest possible
way (or cheapest or shortest). Under the most gen-
eral assumptions, the only way known to reliably
solve the problem is to look at every possible route
and then pick the best one. There is no known way
to eliminate a meaningful proportion of the routes
without checking each one.

How many routes are there? n factorial. That is,
n possibilities for the first visit, and n − 1 for the
second visit, until eventually there is just one city
left for the last visit.

We like to stay away from algorithms that are ex-
ponential. Instead we invent “heuristics” which are
shortcuts that tend to give good results but are not
guaranteed to be the absolute best. A heuristic for
TSP might be: go next to the nearest unvisited city.
Or, link up the closest pair of cities. Then link the
next closest pair of cities. Good heuristics can be
rather tricky, but the payoff is a programming solu-
tion that you can use before the salesman dies of old
age.

We say that exponential algorithms run in Θ(ex)
or exponential time. There are substantial differ-
ences between exponential algorithms, but we will
leave that discussion for the CS students.



4 Loops

The running time of a simple loop (nothing but sim-
ple statements inside it) depends on how many times
the loop will execute. We will look at several simple
cases.

4.1 Counting Up to n

The most common case is a loop whose index starts
at one (or zero) and counts by ones up to some limit
n. This is a Θ(n) loop, the most common type of
loop.

4.2 Counting Down from n

Another common case is a loop whose index starts at
n and counts by ones down to some set limit, usually
one or zero. This is also a Θ(n) loop, (still) the most
common type of loop.

4.3 Add/Subtract any Constant

Whether you count up (add) or down (subtract),
and whether you count by ones or fives or tens, the
result is still the same. Those factors do not affect
the running time of the loop. It is still a Θ(n) loop.

4.4 Multiplying or Dividing

If you multiply by a constant greater than one, your
running time will be Θ(lg n). That is, your index
starts at one, then doubles each time until you reach
or exceed n. It does not matter whether you double
each time, or multiply by three each time (or four or
ten or one hundred). The running time is still log n.

Similarly, if you start at n and count down by
dividing by two or three or ten at each step, stopping
when you reach one (or ten or one hundred), the
running time is also log n.

4.5 Unusual Limits

Watch especially for this one variation on the limit:
i ∗ i < n. In this case, we are running a loop where i
starts at one, for instance, and steps up by a constant
while i∗i < n. This loop will not run the full n times,
but will stop when i reaches

√
n. Thus, it becomes

a root-n loop, written Θ(
√

n).
If we step up or down by multiples, then the

i∗ i < n limit has no special effect. It would theoret-
ically be Θ(lg

√
n), but mathematically this is still

the same as Θ(lg n).

5 Combinations of Algorithms

When we have a Θ(n) loop (block) buried inside
another Θ(n) loop (block), the effects are multi-
plied. The total running time becomes Θ(n2), or
“n squared.” An example would be comparing two
unsorted lists to see if the same item is present in
each list. We might take the first item from list one
and compare it to each item in list two. That would
time order n time. Then we repeat for the next item
in list one. As we go through all n items in list one,
we have n × n or n2 comparisons. If we double the
inputs, it takes us four times as long to complete the
task.

5.1 Sequences of Statements

For a sequence of statements (including possibly
whole blocks of statements), we take the worst run-
ning time among the statements.

For instance, a log n block followed by a linear
block would have an overall running time that is
linear. The effects of the log n loop just vanish.
They are too small to worry about. There is an old
saying in English: Take care of the dollars and the
pennies will take care of themselves.

Simple statements run in Θ(1) time. That is why
they are called simple. A series of however many
simple statements still runs in Θ(1) time.

5.2 If-Else Constructs

For if-else constructs, we always assume the worst
case when we are not sure what will happen. The
worst case for an if-else construct is that it will do
either the if side, or the else side, whichever one is
worse. For practical purposes, this behaves the same
as if we did both sides (see “sequences of statements”
above).

5.3 Worst Running Time

In selecting the worst running time, we can follow
two simple rules.

(1) If the running time includes a power of n, like
n2 or n

1
2 (which equals

√
n), then the block with the

higher power of n is worse.
(2) If the powers of n are the same (or there are

no powers of n), the block with more logs is worse.
For example, in comparing n

√
n lg n to lg3 n, the

first has a power of n of 1.5 (one for n, a half for



√
n). The second has a power of n of zero. So the

first is worse.

5.4 Nested Blocks

When the blocks (typically loops) are nested, we
multiply their running times to get the overall run-
ning time.

5.5 Recursive Subroutines

If you are just preparing for the quiz, you can skip
this section. There are no recursive subroutines on
the quiz.

There is a more elaborate analysis that goes on
for recursive subroutines. These are subroutines (or
functions, or procedures) that call themselves. They
are typical of a divide-and-conquer programming ap-
proach, where a function foo divides its input into
smaller sets and calls itself, foo, on each of those
sets.

This topic is covered in Computer Science courses.

6 And the Winner Is . . .

In the long run, a program with better running time
is a better program. Some programs are not meant
to live a long life. They run once or a few times
and are permanently retired. For these programs,
it does not matter much which algorithm you use
(except exponential, which may not even finish once
in your lifetime).

For any program that will run possibly many
times, maybe for years and years, it is generally
worth the extra effort to use the best possible al-
gorithm. A simple algorithm is fast to program and
takes longer to run. A more complex algorithm costs
more to program, but then it runs faster forever.

It is important for every programmer to be able
to do simple kinds of running-time analysis, such as
those presented here. It is important to be able to
identify a better algorithm by seeing that it has a
faster running time.

Beyond that, for more information one should con-
sult a basic book on Computer Science, or take a
course in analysis of algorithms, where other aspects
of Big Oh analysis are more fully explored.


