Bro Colton

CS 201 Final Exam

Dec 10, 2004

Test ID Number

Student ID Num

ID Sheet: Write your seven-digit BYUH Student
ID number in the blank above. Turn in this sheet
when you complete the test. It will be kept

separate until grading is completed, and will then
be used to assign your score to the proper person.

The “In-Class Test Rules” provided herewith apply
to this exam.

On each of the problem sheets, write your Test ID
Number in the small box in the upper left corner of
the page. Then perform the assigned task (for
example, write a program) in the big box. DO
NOT WRITE YOUR STUDENT ID NUMBER
OR NAME ON ANY OTHER TEST SHEET.

Write a normal, interactive program unless a CGI
program is requested.

There is a PERL CGI module that exists. Don’t
use it.

For database problems, if it is not specified: assume
the database is “DDD”; assume the hostname is
“HHH”; assume the password is “PPP”; assume the
table is “TTT”; assume the user is “UUU”. Never
mention your own database, user, or password.

Ending the Test Generally I will warn you as
the test is coming to a close. I may state “Ten
Minutes Remaining,” “Five Minutes Remaining,”
“Two Minutes Remaining,” “One Minute
Remaining,” and “Put down your pencils.” I may
instruct you to leave your papers neatly arranged
on your desk for me to collect after you leave the
room.

If you keep writing after I instruct you to put down
your pencils, your test may be refused, or I may
deduct points from your score.

Turning In Your Test If the pages of the test
are numbered, put them in the order of those
numbers.

If the pages of the test are not numbered, put the
“In-Class Test Rules” on top. Put this sheet

second. Put the individual problem solutions next,
in order by problem number. Put any remaining
sheets last.

The key concept is to prevent me from seeing or
memorizing your test ID number, as that could
damage my ability to grade anonymously.

Grading

Problems will be graded on the following scale:

Points Descriptive Rubric
20 perfect or small mistake
17 one medium mistake
15 two medium mistakes
13 one large mistake

10 half right, several mistakes
0-9 less than half right

Points are awarded for achieving the major goal of
the problem. Points are not awarded for merely
providing incidental details without making
substantial progress toward the major goal.

Read each problem carefully. Make your program
do everything that is requested. Avoid doing
anything that is not requested. Identify any special
assumptions you are making.

Points can be lost for including extraneous work, as
this suggests one does not know what is needed,
and one is simply throwing in whatever comes to
mind in hopes that some of it is right. Lines
randomly copied from the hints sheet will not get
you points.

Points can be lost for presenting a correct solution
that is substantially less efficient than the desired
solution. In particular, the use of unnecessary loops
can cost points.

There are six problems. Solve any five.
Cross out the one I should not grade. Turn
in all six sheets.

Test ID Number

1 Ducks

A carnival booth has two tubs of water. One tub is
yellow. One tub is orange. In each tub a number of
plastic ducks are floating in the water. The ducks
appear to be identical, but in fact each duck has a
number written on the bottom where it cannot be
seen.

In a contest of luck, one player draws a duck from
the yellow tub and another player draws a duck
from the orange tub. The player with the higher
number wins a prize.

You are given the numbers from the bottoms of the
ducks preloaded in two global arrays: @yellow and

@orange. Write a subroutine to calculate and print
which tub should win more often on average.

Test ID Number

2 Monte Carlo Write a program to roll one die ten thousand times.
Print how many times each number was rolled. For
example, “1 occurred 1607 times”, “2 occurred

Roll one die” means generate a random integer, 1, 1723 times” , etc.

2, 3,4, 5, or 6, with equal probability.

Test ID Number

3 Vote Counter

Write a CGI program. Each time it runs, it lists
two candidate names (make up something funny),
each on a submit button, and the total votes cast
for each.

The first time it runs, set the vote totals to zero.
When a submit button is pressed, the same
program should run, update the total votes for that
candidate, and display the updated screen.
Maintain the vote totals in one or more hidden
fields.

Test ID Number

4 Valid Numbers

Write a program that accepts one line of input and
correctly prints “VALID” or “NOT.” A valid
number can have a plus or minus in front (but no
place else). It must have one or more digits. It can
have a decimal point. Leading zeros are not allowed
unless zero is the only digit before the decimal.

Here are some examples of valid numbers: 0, 1,
11, 1.000, 0.1, .1, 1., +12, -12, +.12, -.12
293.3467, 12.34, +12.34, -12.34

)

Here are some examples of invalid numbers: 007,
1..3, 1.2., 1.2-, 12,345.67, 293-3467,
808.293.3467, 2-, —-2

Test ID Number

5 Select Star

Write a perl subroutine named sstar. As input, it is
given a table name. As output, it prints the entire
contents of that database table (select * ...) in
HTML table format (using <table> <th> <tr>
<td> etc.). For extra credit, include name and data
type for each column.

Test ID Number

6 Verify Table

Write a CGI program that asks for a table name.
When the table name is entered, it connects to a
database and verifies whether that table exists. It
then correctly reports “$table EXISTS” or
“$table DOES NOT EXIST” and again asks for a
table name.

