
Names, Parsing, Scanning

Professor Don Colton

Brigham Young University Hawaii

This seems like a good time to tell why we have such
strict rules on variable names. (This section is not
really about data. It’s about naming data and why
there are issues with it.)

As you will recall, a variable name must start with
a letter. (Letters include A through Z, a through
z, and underscore.) It can continue with letters and
digits. (Digits include 0 through 9.) It has a dollar
sign as a prefix. It must not include special charac-
ters or spaces.

Why is that?

1 Computers are Stupid

In section 1.1 we established that computers are
stupid. Humans understand things by looking for
meaning. This allows us to overlook mistakes that
others might make.

For example, imagine a traffic light, red on top, yel-
low in the middle, green on the bottom. Now imag-
ine the red glass lens covering the top light is broken
and missing. When the light should be red it is
white. You drive up to the light. The white light
(on top) is shining. What should you do?

Normally the human would conclude the light was
supposed to be treated as though it were red. The
human looks for the meaning and overlooks what
might be seen as trivial variances.

Computers generally fail to pass that kind of a test.
Computers generally are programmed to look for
specific conditions and respond to them. Slightly
different conditions can result in failure to properly
recognize the situation.

2 Parsing

Vocabulary warning: this section introduces lots of
new words that are only used in this section.

Computer programs are typically written in text.
They are then converted into a runnable program
through a process called compiling. Compiling is
done by a compiler.

Parsing is the activity your compiler does when it
reads in your program and tries to understand it.
The first step in parsing is called lexical scanning.
In this step, the text of your computer program is
divided up into individual words, called tokens.

In the next step, the tokens are organized according
to the grammar of your programming language.

Let’s look at an example.

print "Hello, World!";

In this example, the lexical scanner would break up
the program into tokens. It would find the following
tokens:

print
"Hello, World!"
;

Tokens are identified by the spaces between them
and by the punctuation around them. The same
tokens would be found if the program looked like
this:

print"Hello, World!" ;

Specifically, the amount of white space between to-
kens is not significant. If you can have one white
space, you can have lots of white space. It’s all the
same to the compiler.

1



3.2 Data / Names, Parsing, Scanning Introduction to Programming

3 Variable Names

For the parser to work efficiently, variable names and
other tokens must follow simple rules. The simple
rule is that viable names are prefixed with a dollar
sign, start with a letter (including underscore), and
continue with letters and digits.

Don Colton Page 2 January 15, 2009


