Input: Hello, Joe!

Professor Don Colton

Brigham Young University Hawaii

Our task is to make the computer say hello, calling $name = <STDIN>;
the user by name. chomp ($name);
print "Hello, $name!";

Here is the first version of the program. $wait = <STDIN>:

print "What is your name?";
$name = <STDIN>;

print "Hello, $name!";
$wait = <STDIN>; What is your name?
Joe

Hello, Joe!

Here is the new result:

We are familiar with most of this. The new part is
the "Hello, $name!" part.

. : 9
Inside double quotes the dollar sign introduces the What would happen if we try this’

variable $name which will contain whatever the user

typed on the previous line. print "What is your name?";
$name = <STDIN>;

chomp ($name);
Notice that when you run it, if you type in Joe, the chomp ($name);

output will be like this: chomp ($name);
print "Hello, $name!";
$wait = <STDIN>;

Type it in and run it.

What is your name?

Joe

Hello, Joe Chomp only removes the enter (also called a car-

! riage return) if it is present. After the first chomp,
the other chomps have no additional effect. The pro-

Strangely the exclamation mark is on a different line. gram will run the same as with one chomp.

Why is that?

It turns out that the input, <STDIN>, returns ev-
erything that was typed, including the enter on the
end of the line. When $name is printed as part of the
literal, we get J, o, e, enter, in place of the $name.

We need to get rid of that pesky enter at the end of
the line.

Fortunately Perl has a command for getting rid of
enters at the end of lines. It is called chomp. (Yeah,
I think it sounds a little silly. These things happen.)

Here is our new program:

print "What is your name?";

