Output: Hello, World!

Professor Don Colton

Brigham Young University Hawaii

Our task is to make the computer say hello. We will
be using the Perl programming language.

Here is the first version of the program.
print "Hello, World!";

Computers take your meaning from the exact words
you write. In this case, the computer will recognize
your statement as having three parts. The first part
is the word print. It recognizes this part, called a
token, by the fact that it is an unbroken series of
letters. Once it has identified the token it can look
it up to find out what it means. The computer has a
pre-defined process that goes with the word print.

The second part of the statement is
"Hello, World!", recognized in this case by
the fact it starts and ends with a double quote
mark. When a token starts with a quote mark
(either single or double), it continues until the
matching quote mark is found. The quote marks
are called delimiters. Everything between is the
token. This special kind of token is called a literal,
or a string of letters. Notice that this token has a
space in it.

The third part of the statement is the semi-colon at
the end. It has a pre-defined meaning of ending the
statement, or more correctly, separating the state-
ment from the next statement. In some languages
semi-colons terminate statements. In Perl they sepa-
rate statements. This means that the last statement
does not need a semi-colon after it.

Bad Syntax

Supposing I wrote this program. What would it do?
What should it do?

Print "Hello, World!";

In this case the computer would parse three tokens
just as before. However, the first token would be
Print which is not on the computer’s list of words
it knows. You and I can look at it and decide it
probably means print based on our own common
sense. Someone could even program the computer to
recognize Print as an alternate spelling for print.
But at this point the computer would choke on our
program and tell us that we have a syntax error.

What about this one?
print "Hello, World!".

The computer will not understand the dot (period,
full stop) at the end of the line. That would be
a syntax error. You or your friend or your tutor
may look at the line and understand exactly what
you mean. They can even tell you that you need
to change the dot to a semi-colon. Why can’t the
computer do that? Computers don’t have common
sense.

Making it Run

We want to run our program. Let’s assume we are
using a Microsoft Windows computer (perating sys-
tem) and that Perl is installed. Then we can use
a text editor like Microsoft Notepad to key in the
program and save it. When we save it, the file name
must end with .pl (dot pee ell). That ending indi-
cates that the file is a Perl program. Some computers
will also allow .perl.

Let’s assume you save your program to your desktop.
After saving your program you can run it by double-
clicking it. The screen should flash briefly. What
happened? The program ran. What did it do? It
printed the words “Hello, World!”. Or rather, it
opened a window, probably black, ran the program,

2.11/0O / Output: Hello, World!

Introduction to Programming

and then closed the window, all so fast that you
could not tell what was happening.

Making it Wait

Let’s add another line to the program. This line is
intended to make the computer wait before closing
the window. We will do this by preventing the pro-
gram from ending.

print "Hello, World!";
$wait = <STDIN>;

In this case our program has two statements. The
first will print the words “Hello, World!”. The sec-
ond will request input. Precisely the meaning is as
follows:

$wait is the name of a variable. We will use many
variables in the future. This is the first one we have
seen. Variable names (in Perl, in the simple case) are
constructed from a dollar sign, followed by a letter,
followed by zero or more letters and digits. In this
case, the variable name is dollar sign and the four
letters w, a, i, and t.

= is the assignment operator. It tells Perl to put
something into the variable on the left (that is,
$wait).

<STDIN> is the standard input channel. The <> part
indicates an input channel and the STDIN part means
standard input. Normally that would be the key-
board. STDOUT is the screen.

When the program runs, this line will cause the com-
puter to wait for the user (the human that is running
the program) to type some input.

Save it and run the program by double-clicking it.

It should open a window, print the words “Hello,
World!”, and pause, waiting for you to type some-
thing (or nothing) and press enter (or return).

Press enter. The program will resume execution,
take whatever you typed, copy it into the variable
$wait, finish running the program, and close the
window.

Don Colton Page 2

January 15, 2009

